5.雙曲線的中心在原點,焦點在x軸上,離心率e=$\frac{\sqrt{6}}{2}$,斜率為1的直線l經(jīng)過M(2,0)且此雙曲線與l交于A、B兩點,若|AB|=4$\sqrt{3}$,求雙曲線的方程.

分析 由離心率公式可得c=$\frac{\sqrt{6}}{2}$a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{\sqrt{2}}{2}$a,設(shè)出直線AB方程,然后聯(lián)立雙曲線的方程消去y得x的方程,利用|AB|=4$\sqrt{3}$,建立方程,即可求a=$\sqrt{2}$,求得b,即可得到所求雙曲線的方程.

解答 解:設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,即c=$\frac{\sqrt{6}}{2}$a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{\sqrt{2}}{2}$a,
設(shè)直線方程為y=x-2,
將b=$\frac{\sqrt{2}}{2}$a代入雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,即有x2-2y2=a2
整理可得x2-8x+8+a2=0,
設(shè)A(x1,y1),B(x2,y2),
可得x1+x2=8,x1x2=8+a2,
|AB|=$\sqrt{1+1}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{64-4(8+{a}^{2})}$=4$\sqrt{3}$,
解得a=$\sqrt{2}$,即有b=1,
則雙曲線的方程為$\frac{{x}^{2}}{2}$-y2=1.

點評 本題考查雙曲線的標準方程的求法,注意運用直線方程和雙曲線的方程聯(lián)立,運用韋達定理和弦長公式,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知點P是直線l:y=x+2與橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的一個公共點,F(xiàn)1,F(xiàn)2分別為該橢圓的左右焦點,設(shè)|PF1|+|PF2|取得最小值時橢圓為C.
(Ⅰ)求橢圓C的標準方程及離心率;
(Ⅱ)已知A,B為橢圓C上關(guān)于y軸對稱的兩點,Q是橢圓C上異于A,B的任意一點,直線QA,QB分別與y軸交于點M(0,m),N(0,n),試判斷mn是否為定值;如果為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個頂點作一條漸近線的垂線,垂足為P,記以雙曲線的實軸為長軸且過點P的橢圓的離心率為e1,雙曲線的離心率為e2,則$\frac{1}{{e}_{1}^{2}}$-$\frac{1}{{e}_{2}^{2}}$=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.過△ABC的重心G任作一條直線分別交AB,AC于點D、E,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{AG}$;
(2)若$\overrightarrow{AD}$=x$\overrightarrow{AB}$,$\overrightarrow{AE}$=y$\overrightarrow{AC}$,且xy≠0,求$\frac{1}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.雙曲線中,焦點為F1(-3,0),F(xiàn)2(3,0),實半軸a=2,則雙曲線的方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=2cos2(x+$\frac{π}{4}$)-1的一個單調(diào)遞減區(qū)間是( 。
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(-$\frac{π}{2}$,$\frac{π}{2}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸出的值為-5,則判斷框中可以填入的條件為( 。
A.z>10?B.z≤10?C.z>20?D.z≤20?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.非空集合A={(x,y)$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y-1≤0}\\{2x+ay-2≤0}\end{array}\right.$},當(x,y)∈A時,對任意實數(shù)m,目標函數(shù)z=x+my的最大值和最小值至少有一個不存在,則實數(shù)a的取值范圍是( 。
A.(-∞,2)B.[0,2)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+3,-3≤x<1}\\{{x}^{2}-2,1≤x<3}\\{{e}^{1-x},3≤x≤5}\end{array}\right.$,求:
(1)f(-2),f(0),f(f(1)),f(2);
(2)函數(shù)f(x)的定義域.

查看答案和解析>>

同步練習冊答案