2.函數(shù)f(x)=x2+$\frac{1}{x}$的圖象在點(diǎn)(1,f(1))處的切線方程為( 。
A.x-y+1=0B.3x-y-1=0C.x-y-1=0D.3x-y+1=0

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),運(yùn)用點(diǎn)斜式方程,可得切線的方程.

解答 解:函數(shù)f(x)=x2+$\frac{1}{x}$的導(dǎo)數(shù)為f′(x)=2x-$\frac{1}{{x}^{2}}$,
可得圖象在點(diǎn)(1,f(1))處的切線斜率為k=2-1=1,
切點(diǎn)為(1,2),
可得圖象在點(diǎn)(1,f(1))處的切線方程為y-2=x-1,
即為x-y+1=0.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處切線的斜率,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=1nx-$\frac{1}{3}$x3+1的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線x2-y2=1左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l過F1,交雙曲線的左支于A,B兩點(diǎn),且|AB|=2,求△ABF2的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且當(dāng)f(k)≥2k(k≥2,k∈N*)時(shí),總有f(k-1)≥2k-1成立,則下列命題為真命題的是( 。
A.若f(1)≥2,則f(n)≥2nB.若f(4)<16,則f(n)<2n
C.若f(4)≥16,則當(dāng)n≥4時(shí),f(n)≥2nD.若f(1)<2,則f(n)<2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.經(jīng)測(cè)定某點(diǎn)處的光照強(qiáng)度與光的強(qiáng)度成正比,與到光源距離的平方成反比,比例常數(shù)為k(k>0),現(xiàn)已知相距3m的A,B兩光源的光的強(qiáng)度分別為a,b,它們連線上任意一點(diǎn)C(異于A,B)處的光照強(qiáng)度y等于兩光源對(duì)該處光源強(qiáng)度之和,設(shè)AC=x(m),已知x=1時(shí)點(diǎn)C處的光照強(qiáng)度是$\frac{33k}{4}$,x=2時(shí)點(diǎn)C處的光照強(qiáng)度是3k.
(1)試將y表示為x的函數(shù),并給出函數(shù)的定義域;
(2)問AB連線上何處光照強(qiáng)度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知k為實(shí)數(shù),函數(shù)f(x)=|x2-4|-x2-kx,x∈(0,4).
(1)求關(guān)于x的方程f(x)=-kx-3在(0,4)上的解;
(2)若函數(shù)y=f(x)在(0,4)上有且僅有一個(gè)零點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式x2-x+2<0的解集為∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.偶函數(shù)f(x)滿足f(x-1)=f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=-x+1,那么在區(qū)間[-3,4]上,函數(shù)y=f(x)的圖象與函數(shù)y=ln|x|的圖象的公共點(diǎn)個(gè)數(shù)是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在底面半徑為1,高為2的圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到圓柱下底面的圓心的距離大于1的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案