某幾何體的三視圖(單位:cm)如圖所示,其中俯視圖中的曲線是四分之一的圓弧,則該幾何體的體積等于
 
cm3,表面積等于
 
cm2
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)幾何體的三視圖,得出該幾何體的特征是什么,從而求出它的體積與表面積.
解答: 解:根據(jù)幾何體的三視圖,得:
該幾何體是底面為半徑等于3的
1
4
圓面,高為4的圓錐的一部分,
∴該幾何體的體積為V幾何體=
1
3
Sh=
1
3
×
1
4
π•32×4=3π;
該幾何體的表面積為S幾何體=2S+
1
4
S+S側(cè)面扇形
=2×
1
2
×4×3+
1
4
•π•32+
1
2
1
4
π•2•3•
42+32

=12+6π.
故答案為:3π;12+6π.
點(diǎn)評(píng):本題考查了空間幾何體的三視圖的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S17>0,S18<0,則
S1
a1
,
S2
a2
,…,
Sn
an
 (n∈N*,n≤18))中最大的項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖輸出的結(jié)果是( 。
A、8B、6C、5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1
x
,證明函數(shù)f(x)在(-∞,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若α是第二象限角,sin(π-α)=
10
10
.求
2sin2
α
2
+8sin
α
2
cos
α
2
+8cos2
α
2
-5
2
sin(α-
π
4
)
 的值;
(2)已知函數(shù)f(x)=tan(2x+
π
4
),設(shè)α∈(0,
π
4
),若f(
α
2
)=2cos2α,求α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式1≤|x-2|≤7的解集為( 。
A、{x|x≤1或x≥3}
B、{x|1≤x≤3}
C、{x|-5≤x≤1或3≤x≤9}
D、{x|-5≤x≤9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=2x+1關(guān)于直線y+2=0對(duì)稱的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的半徑為1,圓心在l:y=
3
x(x≥0)上,若圓C與圓x2+y2=4相交,則圓心C的橫坐標(biāo)的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用“五點(diǎn)法”換函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的圖象時(shí),先列表(部分?jǐn)?shù)據(jù))如下:
ωx+φ0  π  2π
x 
π
3
 
6
 
3
 
11π
6
 
3
y 4 -2 
(1)根據(jù)表格提供的份額數(shù)據(jù)求函數(shù)f(x)的解析式以及單調(diào)遞增區(qū)間;
(2)若當(dāng)x∈[0,
6
]時(shí),方程f(x)=m+1恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍,并求這兩個(gè)解的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案