14.已知正實(shí)數(shù)x,y滿足x+2y=1,則$\frac{y}{2x}$+$\frac{1}{y}$的最小值為2+$\sqrt{2}$.

分析 由1=x+2y,可得$\frac{y}{2x}$+$\frac{1}{y}$=$\frac{y}{2x}$+$\frac{x+2y}{y}$=2+$\frac{x}{y}$+$\frac{y}{2x}$,運(yùn)用基本不等式即可得到所求最小值.

解答 解:由正實(shí)數(shù)x,y滿足x+2y=1,
則$\frac{y}{2x}$+$\frac{1}{y}$=$\frac{y}{2x}$+$\frac{x+2y}{y}$
=2+$\frac{x}{y}$+$\frac{y}{2x}$≥2+2$\sqrt{\frac{x}{y}•\frac{y}{2x}}$=2+$\sqrt{2}$,
當(dāng)且僅當(dāng)y=$\sqrt{2}$x=$\frac{4-\sqrt{2}}{7}$時(shí),取得最小值2+$\sqrt{2}$.
故答案為:2+$\sqrt{2}$.

點(diǎn)評 本題考查最值的求法,注意運(yùn)用“1”的代換法和基本不等式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足:an+1=2an,且a1,a2+1,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an(n∈N*),求使b1+b2+…+bn>45成立的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對于任意的n∈N*,滿足關(guān)系式2Sn=3an-3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式是bn=$\frac{1}{{(2{{log}_3}{a_n}+1)•(2{{log}_3}{a_n}+3)}}$,bn前n項(xiàng)和為Tn,求證:對于任意的正整數(shù)n,總有Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)和g(x)是兩個(gè)定義在區(qū)間M上的函數(shù),若對任意的x∈M,存在常數(shù)x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x)=g(x0,則稱f(x)與g(x)在區(qū)間M上是“相似函數(shù)”,若f(x)=2x2+ax+b與g(x)=x+$\frac{4}{x}$在[1,$\frac{5}{2}$]上是“相似函數(shù)”,則函數(shù)f(x)在區(qū)間[1,$\frac{5}{2}$]上的最大值為(  )
A.4B.$\frac{9}{2}$C.6D.$\frac{89}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過1mm時(shí),則視為合格品,否則視為不合格品,在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如表頻率分布表:
分組頻數(shù)頻率
[-3,-2)50.10
[-2,-1)80.16
(1,2]a0.50
(2,3]10b
(3,4]c0.04
合計(jì)501.00
(1)寫出如表表格中缺少的數(shù)據(jù)a,b,c的值:a=25,b=0.2,c=2.
(2)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的頻率;
(3)現(xiàn)對該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.四棱錐P-ABCD底面是菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
(Ⅰ)求證:平面AEF⊥平面PAD;
(Ⅱ)若$\frac{PA}{AB}$=$\sqrt{3}$,設(shè)H為PD的四等分點(diǎn)(靠近點(diǎn)D),求EH與平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)等比數(shù)列{an},a1=1,a4=8,則S10=1023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ=8$\sqrt{2}$cos(θ-$\frac{3π}{4}$),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$,(θ為參數(shù)).
(1)將曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程,將曲線C2的參數(shù)方程化為普通方程;
(2)若P是曲線C2上的動(dòng)點(diǎn),求P到直線l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t為參數(shù))的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校高三文科500名學(xué)生參加了3月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從500名學(xué)生中抽取100名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,抽出的100名學(xué)生的地理、歷史成績?nèi)绫恚?br />
地理
歷史
[80,100][60,80][40,60]
[80,100]8m9
[60,80]9n9
[40,60]8157
若歷史成績在[80,100]區(qū)間的占30%,
(1)求m,n的值;
(2)請根據(jù)上面抽出的100名學(xué)生地理、歷史成績,填寫下面地理、歷史成績的頻數(shù)分布表:
[80,100][60,80][40,60]
地理
歷史
根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計(jì)歷史和地理的平均成績及方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并估計(jì)哪個(gè)學(xué)科成績更穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊答案