17.二項(xiàng)式${({ax+\frac{{\sqrt{3}}}{6}})^6}$的展開式中x5的系數(shù)為$\sqrt{3}$,則$\int_0^a{x^2}dx$=$\frac{1}{3}$.

分析 先用二項(xiàng)式定理求得a的值,再求定積分的值.

解答 解:由二項(xiàng)式定理可得:${C}_{6}^{1}(ax)^{5}(\frac{\sqrt{3}}{6})^{1}$的系數(shù)為$\sqrt{3}$,則a=1,
$\int_0^a{x^2}dx$=${∫}_{0}^{1}{x}^{2}$dx=$\frac{1}{3}{x}^{3}{丨}_{0}^{1}$=$\frac{1}{3}$
故答案為:$\frac{1}{3}$

點(diǎn)評 本題考查二項(xiàng)式定理及定積分求值,屬于常見題型,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若角α的終邊落在直線x+y=0上,則tanα的值為( 。
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在數(shù)列{an}中,a7=16,an-$\frac{1}{2}$an+1=0,則a2的值為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1 分別是線段BC,B1C1的中點(diǎn),過線段AD的中點(diǎn)P作BC的平行線,分別交AB,AC于點(diǎn)M,N.
(Ⅰ)證明:MN⊥平面ADD1A1;
(Ⅱ)求二面角A-A1M-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)解析式f(x)=2sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$cos\frac{2π}{3}•tan\frac{7π}{4}$的值為( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=x3B.y=|x+1|C.y=-x2D.y=|x|+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用邊長為120cm的正方形鐵皮做一個無蓋水箱,先在四周分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接成水箱,則水箱的最大容積為( 。
A.120 000 cm3B.128 000 cm3C.150 000 cm3D.158 000 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在正三棱錐V-ABC內(nèi),有一半球,其底面與正三棱錐的底面重合,且與正正三棱錐的三個側(cè)面都相切,若半球的半徑為2,則正三棱錐的體積最小時,其高等于2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案