分析 設出點P坐標(x,y),由PF1⊥PF2得到一個方程,將此方程代入雙曲線的方程,消去x,求出|y|的值,即得點P到x軸的距離.
解答 解:設點P(x,y),
由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1,雙曲線的離心率等于$\frac{\sqrt{5}}{2}$,可得a=2,
∴F1(-$\sqrt{5}$,0)、F2($\sqrt{5}$,0),
∵$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
∴PF1⊥PF2,
∴$\frac{y-0}{x+\sqrt{5}}$•$\frac{y-0}{x-\sqrt{5}}$=-1,
∴x2+y2=5,
代入雙曲線方程$\frac{{x}^{2}}{4}$-y2=1,
∴y2=$\frac{1}{5}$,
∴|y|=$\frac{\sqrt{5}}{5}$,
∴P到x軸的距離是$\frac{\sqrt{5}}{5}$,
故答案為$\frac{\sqrt{5}}{5}$.
點評 本題以雙曲線為載體,考查雙曲線的幾何性質,考查雙曲線方程的運用,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -3 | B. | 1 | C. | -1 | D. | 1或-3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com