10.函數(shù)f(x)=$\frac{\sqrt{1-{x}^{2}}-1}{x-2}$的值域是( 。
A.[-$\frac{4}{3}$,$\frac{4}{3}$]B.[-$\frac{4}{3}$,0]C.[0,$\frac{4}{3}$]D.[0,1]

分析 先求出函數(shù)的定義域,利用換元法轉化為兩點間的斜率關系,利用數(shù)形結合進行求解即可.

解答 解:由$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{x-2≠0}\end{array}\right.$得$\left\{\begin{array}{l}{-1≤x≤1}\\{x≠2}\end{array}\right.$,則-1≤x≤1,即函數(shù)的定義域為[-1,1],
設x=sinα,則函數(shù)f(x)等價為y=$\frac{\sqrt{1-si{n}^{2}α}-1}{sinα-2}$=$\frac{|cosα|-1}{sinα-2}$,
設P(sinα,|cosα|),則點P在單位圓x2+y2=1的上半部分,
則$\frac{|cosα|-1}{sinα-2}$的幾何意義是圓上點到點A(2,1)的斜率,
由圖象知AB的斜率最小,此時k=0,

AC的斜率最大,此時k=$\frac{0-1}{1-2}=\frac{-1}{-1}$=1,
故0≤k≤1,
故函數(shù)f(x)的值域是[0,1],
故選:D

點評 本題主要考查函數(shù)值域的求解,利用換元法轉化為兩點斜率的關系是解決本題的關鍵.綜合性較強.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.在復平面上,復數(shù)-3-2i、-4+5i、2+i、z分別對應點A、B、C、D,且ABCD為平行四邊形,則z=3-6i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是邊長等于2的正方形,其他四個側面都是邊長等于$\sqrt{5}$的等腰三角形,點E是PC中點.
(1)求證:PA∥平面EBD;
(2)求證:平面PAC⊥平面PBD;
(3)若該四棱錐P-ABCD是一個銅制的幾何體,將它熔鑄成一個實心球體,假設熔鑄過程沒有材料損失,求這個球體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.地球上,在北緯30°圈上有兩個點A、B,它們的經(jīng)度之差為180°,則A、B兩點間的球面距離為(地球的半徑為R)( 。
A.$\frac{\sqrt{3}}{3}$RB.$\frac{1}{3}$πRC.$\frac{1}{2}$πRD.$\frac{2}{3}$πR

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,$\overrightarrow{AM}$=2$\overrightarrow{MD}$,若$\overrightarrow{AC}$•$\overrightarrow{BM}$=-3,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)求和$\frac{3}{1!+2!+3!}$+$\frac{4}{2!+3!+4!}$+…+$\frac{n+2}{n!+(n+1)!+(n+2)!}$;
(2)已知$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{1{0C}_{7}^{m}}$,求${C}_{8}^{m}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知離散型隨機變量X的分布列如下:
X012
Pa4a5a
則均值E(X)與方差D(X)分別為( 。
A.1.4,0.2B.0.44,1.4C.1.4,0.44D.0.44,0.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知f(x)=$\sqrt{3}$cos2x-sinxcosx
(I)求函數(shù)f(x)的最大值及對應x的值;
(Ⅱ)在△ABC中,∠A,∠B,∠C所對的邊分別是a、b、c,若($\frac{C}{2}$,$\frac{\sqrt{3}}{2}$)是函數(shù)f(x)圖象的一個對稱中心,且△ABC的周長為6時,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.己知x>0,y>0,且4xy-x-2y=4,則xy的最小值為2.

查看答案和解析>>

同步練習冊答案