已知實(shí)數(shù)x、y滿足
2x-y≤0
x-3y+5≥0
x>0
y>0
,則z=(
1
2
2x•(
1
2
)y
的最小值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用指數(shù)冪的運(yùn)算法則,利用數(shù)形結(jié)合確定z的最小值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=(
1
2
2x•(
1
2
)y
=(
1
2
2x+y,
設(shè)m=2x+y得y=-2x+m,
平移直線y=-2x+m,
由圖象可知當(dāng)直線y=-2x+m經(jīng)過點(diǎn)A時,直線y=-2x+m的截距最大,
此時m最大.z最小,
2x-y=0
x-3y+5=0
,解得
x=1
y=2
,即A(1,2)
A的坐標(biāo)代入目標(biāo)函數(shù)m=2x+y,
得m=2+2=4.
即z=(
1
2
2x•(
1
2
)y
=(
1
2
2x+y的最大值為(
1
2
4=
1
16

故答案為:
1
16
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合指數(shù)冪的運(yùn)算法則以及目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖的判斷框有
 
個出口.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,
π
2
),若sin(α-
π
3
)=
1
3
,sinα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將5名實(shí)習(xí)老師分配到4個班級任課,每班至少1人,則不同的分配方法數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個樣本為8,12,14,18,則樣本的中位數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,不等式
x+y≥0
x-y≥0
x≤a
(a為常數(shù))表示平面區(qū)域的面積為9,則
y-2
x+4
的最小值為( 。
A、-1
B、
2
7
C、
1
7
D、-
5
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,對任意x∈R有f(x)=f(x+6),且f(x)在(0,3)內(nèi)單調(diào)遞減,f(x)的圖象關(guān)于直線x=3對稱,則下列正確的結(jié)論是( 。
A、f(1.5)<f(3.5)<f(6.5)
B、f(6.5)<f(3.5)<f(1.5)
C、f(3.5)<f(1.5)<f(6.5)
D、f(3.5)<f(6.5)<f(1.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x<m-1或x>m+1是x2-2x-3>0的必要不充分條件,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
2i
3
+3i
=(  )
A、
1
2
-
3
6
i
B、
1
2
+
3
6
i
C、1-
3
3
i
D、1+
3
3
i

查看答案和解析>>

同步練習(xí)冊答案