18.已知拋物線y2=4x上一點(diǎn)P到焦點(diǎn)F的距離為5,則△PFO的面積為2.

分析 利用拋物線的定義,求出P的坐標(biāo),然后求出三角形的面積.

解答 解:由拋物線定義,|PF|=xP+1=5,所以xP=4,|yP|=4,
所以,△PFO的面積S=$\frac{1}{2}|OF||{y}_{P}|$=$\frac{1}{2}×1×4=2$.
故答案為:2.

點(diǎn)評(píng) 本題考查拋物線的簡單性質(zhì)的應(yīng)用,三角形的面積的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx-$\sqrt{3}$與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知過拋物線y2=2px(p>0)的焦點(diǎn),斜率為2$\sqrt{2}$的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),且AB=9.
(1)求該拋物線的方程;    
(2)求A,B兩點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.M是拋物線x2=y上一點(diǎn),N是不等式x+y-4≥0表示區(qū)域內(nèi)的一點(diǎn),O為原點(diǎn),則|$\overrightarrow{ON}$+2$\overrightarrow{OM}$|的最小值為$\frac{{7\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=AAl=2,∠ABC=120°,點(diǎn)P在線段AC1上,且AP=2PCl,M為線段AC的中點(diǎn).
(I)證明:BM∥平面B1CP;
(Ⅱ)求直線AB1與平面B1CP所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)M(2,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn)C,$|{BF}|=\frac{3}{2}$,則△BCF與△ACF的面積的比值為( 。
A.1:4B.1:5C.1:6D.1:7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過拋物線x2=4y的焦點(diǎn)F作直線AB,CD與拋物線交于A,B,C,D四點(diǎn),且AB⊥CD,則$\overrightarrow{FA}$•$\overrightarrow{FB}$+$\overrightarrow{FC}$•$\overrightarrow{FD}$的最大值等于-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線y2=2px(p>0)存在關(guān)于直線x+y=1對(duì)稱的相異兩點(diǎn)A、B,則實(shí)數(shù)p的取值范圍是( 。
A.(0,1)B.(0,+∞)C.(0,$\frac{2}{3}$]D.(0,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{lnx}{x}$的單調(diào)遞減區(qū)間是(e,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案