A. | 8π | B. | 12π | C. | 16π | D. | 32π |
分析 由已知結合三棱錐和正三棱柱的幾何特征,可得此三棱錐外接球,即為以△ABC為底面以SA為高的正三棱柱的外接球,分別求出棱錐底面半徑r,和球心距d,得球的半徑R,然后求解表面積.
解答 解:根據(jù)已知中底面△ABC是邊長為3的正三角形,SA⊥平面ABC,SA=2,
可得此三棱錐外接球,即為以△ABC為底面以SA為高的正三棱柱的外接球,
∵△ABC是邊長為3的正三角形,
∴△ABC的外接圓半徑r=$\sqrt{3}$,球心到△ABC的外接圓圓心的距離d=1,
故球的半徑R=$\sqrt{3+1}$=2.
三棱錐S-ABC外接球的表面積為:4π×4=16π.
故選:C.
點評 本題考查的知識點是球內(nèi)接多面體,熟練掌握球的半徑R公式是解答的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (±1,0) | B. | (±2,0) | C. | $(±2\sqrt{2},0)$ | D. | (±4,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>