7.四個不同的小球放入編號為1,2,3,4的四個盒子中.
(1)若每個盒子放一球,則有多少種不同的放法?
(2)恰有一個空盒的放法共有多少種?

分析 (1)每個盒子均有一球,也就是4個元素的排列;
(2)由題意知需要先選兩個元素作為一組再排列,恰有一個盒子中有2個小球,從4個小球中選兩個作為一個元素,同另外兩個元素在三個位置全排列,根據(jù)分步計數(shù)原理得到結(jié)果.

解答 解:(1)每個盒子均有一球,也就是4個元素的排列,故有A44=24種不同的放法;
(2)四個不同的小球放入編號為1,2,3,4的四個盒子中,恰有一個空盒,說明恰有一個盒子中有2個小球,
從4個小球中選兩個作為一個元素,同另外兩個元素在三個位置全排列,故共有C42A43=144種不同的放法.

點評 本題考查分步計數(shù)原理,是一中檔題,解題的過程中注意這種有條件的排列要分步走,先選元素再排列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=(x2+ax)ex的兩個極值為x1,x1,且x1+x1=-2-$\sqrt{5}$.
(1)求x1,x1的值;
(2)若f(x)在(c-1,c)(其中c<-1)上是單調(diào)函數(shù),求c的取值范圍;
(3)當m≤-e,求證:[f(x)+2ex]•[(x-2)ex-m+1]>$\frac{3}{4}$ex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某中學有甲乙兩個文科班進行數(shù)學考試,按照大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
20525
101525
合計302050
(1)用分層抽樣的方法在優(yōu)秀的學生中抽6人,其中甲班抽多少人?
(2)計算出統(tǒng)計量k2,能否有95%的把握認為“成績與班級有關”?
下面的臨界值表代參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=x-ex的增區(qū)間為( 。
A.(1,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知f′(x)為y=f(x)的導函數(shù),且f′(x0)=a,則$\lim_{△x→0}\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.aB.-aC.±aD.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.方程x2-mnx+m+n=0有整數(shù)根,且m.n為自然數(shù),則m、n的有幾對,試求出來.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在四面體S-ABC中,SA⊥平面ABC,△ABC是邊長為3的正三角形,SA=2,則該四面體的外接球的表面積為( 。
A.B.12πC.16πD.32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,圓O與直線x+$\sqrt{3}$y+2=0相切于點P,與x正半軸交于點A,與直線y=$\sqrt{3}$x在第一象限的交點為B.點C為圓O上任一點,且滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,以x,y為坐標的動點D(x,y)的軌跡記為曲線Γ.
(1)求圓O的方程及曲線Γ的方程;
(2)若兩條直線l1:y=kx和l2:y=-$\frac{1}{k}$x分別交曲線Γ于點E、F和M、N,求四邊形EMFN面積的最大值,并求此時的k的值.
(3)根據(jù)曲線Γ的方程,研究曲線Γ的對稱性,并證明曲線Γ為橢圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.用“五點法”畫函數(shù)y=-2+sinx(x∈[0,2π])的簡圖.

查看答案和解析>>

同步練習冊答案