10.如圖所示,正三棱錐P-ABC的底面邊長為a,高PO為h,求它的側(cè)棱PA和斜高PD的長.

分析 先求出AD,再分別求出OD,AO,由此利用勾股定理能求出結(jié)果.

解答 解:如圖,∵正三棱錐P-ABC的底面邊長為a,高PO為h,
∴AD=$\sqrt{{a}^{2}-\frac{{a}^{2}}{4}}$=$\frac{\sqrt{3}a}{2}$,OD=$\frac{1}{3}AD$=$\frac{1}{3}×\frac{\sqrt{3}a}{2}$=$\frac{\sqrt{3}a}{6}$,
∴PD=$\sqrt{P{O}^{2}+O{D}^{2}}$=$\sqrt{{h}^{2}+\frac{{a}^{2}}{12}}$=$\frac{\sqrt{36{h}^{2}+3{a}^{2}}}{6}$.
AO=$\frac{2}{3}AD=\frac{2}{3}×\frac{\sqrt{3}a}{2}$=$\frac{\sqrt{3}a}{3}$,
∴PA=$\sqrt{A{O}^{2}+P{O}^{2}}$=$\sqrt{\frac{1}{3}{a}^{2}+{h}^{2}}$.

點(diǎn)評 本題考查三棱錐的側(cè)棱和斜高長的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面內(nèi),過定點(diǎn)P的直線mx+y-1=0與過定點(diǎn)Q的直線x-my+3=0相交與點(diǎn)M,則|MP||MQ|的最大值是( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{10}$C.10D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC中,bcosB=ccosC,則△ABC的形狀為( 。
A.直角三角形B.等腰三角形
C.等腰或直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求滿足${({\frac{1}{3}})^{{x^2}-15}}$>3-2X的x的取值集合是(3,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax,g(x)=a-2x+1,其中a>0,且a≠1.
(1)若函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,4),求f(-1)的值;
(2)解不等式:f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖是一個算法流程圖,則輸出的n為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)經(jīng)過點(diǎn)(0,1),且離心率$e=\frac{{\sqrt{2}}}{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l:y=k(x-1)與橢圓交于 A、B兩點(diǎn),若$\overrightarrow{{O}{A}}•\overrightarrow{{O}{B}}=0$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x≥9}\\{x+5,x<9}\end{array}\right.$,則f(12)的值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在棱長為2的正方體ABCD一A1B1C1D1中,點(diǎn)E,F(xiàn),G分別是邊AB,BC,AA1上的點(diǎn),記AE=x,BF=y,A1G=z,
(1)若x=y=z=1,記平面EFG與邊CC1的交點(diǎn)為H,求異面直線A1E與DH所成的角;(2)若x+y=2,求證:截面EFG⊥平面BDD1B1;
(3)若x=z,且y=1,求三棱錐B1-GEF的體積的最小值.

查看答案和解析>>

同步練習(xí)冊答案