A. | f(-25)<f(19)<f(40) | B. | f (40)<f(19)<f(-25) | C. | f(19)<f(40)<f(-25) | D. | f(-25)<f(40)<f(19) |
分析 由奇函數(shù)得到f(-x)=-f(x),f(0)=0,由f(x-4)=-f(x),得到函數(shù)f(x)的周期為8,再由定義在R上的奇函數(shù)f(x)在(0,2]上單調(diào)遞增,得到函數(shù)f(x)在[-2,2]上單調(diào)遞增,即可得到答案.
解答 解:∵f(x)是定義在R上的奇函數(shù),∴f(-x)=-f(x),f(0)=0,
∵f(x-4)=-f(x),
∴f(x+4)=-f(x),
∴f(x+8)=f(x),
∴函數(shù)f(x)的周期為8,
∴f(-25)=f(-1),f(40)=f(0),f(19)=f(3)=f(1)
∵定義在R上的奇函數(shù)f(x)在(0,2]上單調(diào)遞增,
∴函數(shù)f(x)在[-2,2]上單調(diào)遞增,
∴f(-1)<f(0)<f(1),
∴f(-25)<f(40)<f(19).
故選:D.
點(diǎn)評 本題考查函數(shù)的奇偶性和單調(diào)性及運(yùn)用,以及函數(shù)的周期性及應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$-1 | D. | $\frac{\sqrt{2}+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y≥0 | B. | y≥1 | C. | $y≥\frac{3}{4}$ | D. | $\frac{3}{4}≤y≤1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 19 | C. | 20 | D. | 21 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com