3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)若AB邊的長(zhǎng)為11,求△ABC的面積.

分析 (I)由cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$,A,B∈(0,π),可得sinA=$\sqrt{1-co{s}^{2}A}$,sinB=$\sqrt{1-co{s}^{2}B}$.sinC=sin(A+B)=sinAcosB+cosAsinB.
(II)由正弦定理可得:a=$\frac{csinA}{sinC}$,b=$\frac{csinB}{sinC}$.S△ABC=$\frac{1}{2}absinC$=$\frac{{c}^{2}}{2}$×$\frac{sinAsinB}{si{n}^{2}C}$.

解答 解:(I)∵cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$,A,B∈(0,π),∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{12}{13}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$.
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{12}{13}$×$\frac{4}{5}$-$\frac{5}{13}$×$\frac{3}{5}$=$\frac{33}{65}$.
(II)由正弦定理可得:$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$,可得:a=$\frac{csinA}{sinC}$,b=$\frac{csinB}{sinC}$.
S△ABC=$\frac{1}{2}absinC$=$\frac{{c}^{2}}{2}$×$\frac{sinAsinB}{si{n}^{2}C}$=$\frac{1{1}^{2}}{2}$×$\frac{\frac{12}{13}×\frac{3}{5}}{(\frac{33}{65})^{2}}$=234.

點(diǎn)評(píng) 本題考查了正弦定理、和差公式、三角函數(shù)基本關(guān)系式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,在網(wǎng)格狀小地圖中,一機(jī)器人從A(0,0)點(diǎn)出發(fā),每秒向上或向右行走1格到相應(yīng)頂點(diǎn),已知向上的概率是$\frac{2}{3}$,向右的概率是$\frac{1}{3}$,問6秒后到達(dá)B(4,2)點(diǎn)的概率為$\frac{20}{243}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線l:y=-x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.設(shè)O是坐標(biāo)原點(diǎn),直線l'平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.若存在常數(shù)λ,使得|PT|2=λ|PA|•|PB|,則λ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,A=60°,a=$\sqrt{7}$,三角形面積為$\frac{3\sqrt{3}}{2}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x),g(x)滿足當(dāng)x∈R時(shí),f′(x)g(x)+f(x)′g(x)>0,若a>b,則有(  )
A.f(a)g(a)=f(b)g(b)B.f(a)g(a)>f(b)g(b)
C.f(a)g(a)<f(b)g(b)D.f(a)g(a)與f(b)g(b)大小關(guān)系不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知集合A={x|1<x≤5},集合B={x|$\frac{2x-5}{x-6}$≥0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤4a-3},且C∪A=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知|$\overrightarrow a$|=$\sqrt{10}$,$\overrightarrow a$•$\overrightarrow b$=-$\frac{{5\sqrt{30}}}{2}$,且(${\overrightarrow a$-$\overrightarrow b}$)•(${\overrightarrow a$+$\overrightarrow b}$)=-15,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在(0,2]上單調(diào)遞增,則(  )
A.f(-25)<f(19)<f(40)B.f (40)<f(19)<f(-25)C.f(19)<f(40)<f(-25)D.f(-25)<f(40)<f(19)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)F1、F2分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F2的直線交雙曲線右支于A、B兩點(diǎn),若AF2⊥AF1,且|BF2|=2|AF2|,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{58}}}{4}$D.$\sqrt{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案