己知直線 l的參數(shù)方程為
x=t
y=2t+1
(t為參數(shù)),圓C的參數(shù)方程為
x=acosθ
y=asinθ
.(a>0.θ為參數(shù)),點P是圓C上的任意一點,若點P到直線l的距離的最大值為
5
5
+1
,求a的值.
考點:參數(shù)方程化成普通方程,直線的參數(shù)方程
專題:坐標系和參數(shù)方程
分析:本題可以通過消參法得到直線和圓的普通方程,再利用點到直線的距離公式求出點P到直線l的距離,由于點P到直線l的距離的最大值為
5
5
+1
,故可得到本應(yīng)的等式,從而求出a的值,得到本題結(jié)論.
解答: 解:∵直線l的參數(shù)方程為
x=t
y=2t+1

消去參數(shù)t,得直線l的普通方程為y=2x+1.
又∵圓C的參數(shù)方程為
x=acosθ
y=asinθ
(a>0,θ為參數(shù)),
∴圓C的普通方程為x2+y2=a2
∵圓C的圓心到直線l的距離d=
5
5

故依題意,得
5
5
+a=
5
5
+1

解得a=1.
點評:本題考查了參數(shù)方程與普通方程的互化、點到直線的距離公式,本題難度不大,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在極坐標系中,點(2,
π
3
)到直線ρcosθ=3的距離等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2位男生3位女生共5位同學排成一排,則男生不站排頭也不站排尾的不同站法種數(shù)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-3x>0
3-x2<0
,則f(2015)+f(-2015)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{fn(x)}滿足f1(x)=
x
1+x2
(x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表達式;
(2)用數(shù)學歸納法證明對fn(x)的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系O-xyz中,已知O(0,0,0),A(1,2,3),B(2,1,2),P(1,1,2),點Q在直線OP上運動,當
QA
QB
取最小值時,點Q的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)的左、右焦點,點P在C上,若PF1⊥F1F2,且PF1=F1F2,則C的離心率是( 。
A、
2
-1
B、
5
+1
2
C、
2
+1
D、
5
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
2
sin(2x-
π
4
)+
1
2

(Ⅰ)求f(x)的值域和最小正周期;
(Ⅱ)設(shè)α∈(0,π),且f(α)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,A=
π
3
,sinB=
3
3

(1)求cosB的值;
(2)若2c=b+2,求邊長b.

查看答案和解析>>

同步練習冊答案