4.已知等差數(shù)列{an}的公差d>0,a3=-3,a2a4=5,則an=2n-9;記{an}的前n項(xiàng)和為Sn,則Sn的最小值為-16.

分析 等差數(shù)列{an}的公差d>0,a3=-3,a2a4=5,可得$\left\{\begin{array}{l}{{a}_{1}+2d=-3}\\{({a}_{1}+d)({a}_{1}+3d)=5}\end{array}\right.$,解得d,a1.即可得出.

解答 解:等差數(shù)列{an}的公差d>0,a3=-3,a2a4=5,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=-3}\\{({a}_{1}+d)({a}_{1}+3d)=5}\end{array}\right.$,解得d=2,a1=-7.
∴an=-7+2(n-1)=2n-9.
令an≤0,解得n≤4.
∴當(dāng)n=4時(shí),{an}的前n項(xiàng)和Sn取得最小值S4=4×(-7)+$\frac{4×3}{2}$×2=-16.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四邊形ABCD為矩形,且AB=1,AD=2,PA⊥平面ABCD,E、F為BC、AB的中點(diǎn).
(1)證明:PE⊥DE;
(2)若在線段PA上存在點(diǎn)G,使得FG∥平面PDE.試確定點(diǎn)G的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知復(fù)數(shù)z滿足(2-3i)z=3+2i(i是虛數(shù)單位),則z的模為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的解析式為f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CA}$=$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合A={-1,0,1},B={a-1,a+$\frac{1}{a}}$},A∩B={0},則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值為m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.3B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求使cosx=2a-3成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:z=1+$\sqrt{3}$i,求X=$\frac{{z}^{2}-(1-\sqrt{3}i)+6}{|z|-z}$的模.

查看答案和解析>>

同步練習(xí)冊答案