8.在四邊形ABCD中,已知AB=8,AD=5,$\overrightarrow{DC}$=$\frac{1}{4}$$\overrightarrow{AB}$,$\overrightarrow{AC}$•$\overrightarrow{BC}$=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是22.

分析 由$\overrightarrow{DC}$=$\frac{1}{4}$$\overrightarrow{AB}$,可得$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}$,$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}-\overrightarrow{AB}$=$\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB}$,再由$\overrightarrow{AC}$•$\overrightarrow{BC}$=2,即可得到$(\overrightarrow{AD})^{2}-\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}-\frac{3}{16}(\overrightarrow{AB})^{2}=2$,進(jìn)一步求出$\overrightarrow{AB}$•$\overrightarrow{AD}$的值.

解答 解:在四邊形ABCD中,∵$\overrightarrow{DC}$=$\frac{1}{4}$$\overrightarrow{AB}$,
∴$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}$,
∴$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}-\overrightarrow{AB}$=$\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB}$.
∵$\overrightarrow{AC}$•$\overrightarrow{BC}$=2,即$(\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB})•(\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB})=2$,
∴$(\overrightarrow{AD})^{2}-\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}-\frac{3}{16}(\overrightarrow{AB})^{2}=2$,
∵$|\overrightarrow{AB}|=8$,$|\overrightarrow{AD}|=5$,
∴${5}^{2}-\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}-\frac{3}{16}×{8}^{2}=2$,
∴$\overrightarrow{AB}$•$\overrightarrow{AD}$=22.
故答案為:22.

點(diǎn)評(píng) 本題考查向量在幾何中的應(yīng)用,考查平面向量數(shù)量積的運(yùn)算,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=log2$\sqrt{-{x^2}+2x+3}$,則f(x)的定義域是(-1,3);最大值是2;f(x)的單調(diào)增區(qū)間是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|2x+a|+x(a∈R)
(Ⅰ)當(dāng)a=-2時(shí),求不等式f(x)≤2x+1的解集
(Ⅱ)已知不等式f(x)≤|x+3|(x>0)的解集為D,且[1,2]⊆D,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)于平面向量$\overrightarrow{a}$,$\overrightarrow$,
①若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}=\overrightarrow$;
②若$\overrightarrow{a}=\overrightarrow$,則$\overrightarrow{a}$-$\overrightarrow$=$\overrightarrow{0}$;
③若$\overrightarrow{a}$與$\overrightarrow$共線(xiàn),則$\overrightarrow{a}$與$\overrightarrow$方向相同;
④在邊長(zhǎng)為1的等邊三角形ABC中,BC的中點(diǎn)為D,則向量$\overrightarrow{AD}$的模為1.正確的命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=x5+ax3+bx-8,并且滿(mǎn)足f(m)=10,(其中a、b、m為常數(shù)),則f(-m)=-26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線(xiàn)與x軸的交點(diǎn)為Q,過(guò)Q點(diǎn)的直線(xiàn)1交拋物線(xiàn)于A,B兩點(diǎn).
(1)若以AB為直徑的圓恰好過(guò)點(diǎn)F,求直線(xiàn)1的斜率;
(2)設(shè)直線(xiàn)AF,BF與拋物線(xiàn)C的另一個(gè)交點(diǎn)分別為D,E,求證:|AB|=|DE|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=sin2x-$\sqrt{3}$sinxcosx+$\frac{1}{2}$,g(x)=mcos(x+$\frac{π}{3}$)-m+2
(1)若對(duì)任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范圍;
(2)若對(duì)任意的x∈[0,π],均有f(x)≥g(x),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.從裝有6個(gè)白球和4個(gè)紅球的口袋中任取一個(gè)球,用ξ表示“取到的白球個(gè)數(shù)”,即$\left\{\begin{array}{l}{1,當(dāng)取到白球時(shí)}\\{0,當(dāng)取到紅球時(shí)}\end{array}\right.$,則Dξ=0.24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,|$\overrightarrow b$|=4,$(\overrightarrow a+2\overrightarrow b)•(\overrightarrow a-3\overrightarrow b)=-72$,則向量|$\overrightarrow a$|=( 。
A.6B.4C.2D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案