19.已知曲線C:y=x2(x≥0),直線l為曲線C在點(diǎn)A(1,1)處的切線.
(Ⅰ)求直線l的方程;
(Ⅱ)求直線l與曲線C以及x軸所圍成的圖形的面積.

分析 (Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程;
(2)根據(jù)定積分的幾何意義即可求出所圍成的圖形的面積.

解答 解:(Ⅰ)由y′=2x,
則切線l的斜率k=y′|x=1=2×1=2,
切線l的方程為y-1=2(x-1)即2x-y-1=0;
(Ⅱ)如圖,所求的圖形的面積$s=\int_0^{\frac{1}{2}}{x^2}dx+\int_{\frac{1}{2}}^1{[{{x^2}-(2x-1)}]}dx=\frac{1}{12}$.

點(diǎn)評 本題考查了切線方程的求法和定積分的我?guī)缀我饬x,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若橢圓的對稱軸為坐標(biāo)軸,且長軸長為10,有一個(gè)焦點(diǎn)坐標(biāo)是(3,0),則此橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),P為上雙曲線右支上一點(diǎn),線段F2P的垂直平分線過坐標(biāo)原點(diǎn)O,若雙曲線的離心率為$\sqrt{5}$,則$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)z1=i,z2=1+i,那么復(fù)數(shù)z1•z2在復(fù)平面上的對應(yīng)點(diǎn)所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等比數(shù)列{an}中,若a3,a7是方程x2-5x+2=0的兩根,則a5的值是( 。
A.$\sqrt{2}$B.±$\sqrt{2}$C.-$\sqrt{2}$D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.-225°是第( 。┫笙藿牵
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“存在x∈[0,2],x2-x-a≤0為真命題”的一個(gè)充分不必要條件是( 。
A.a≤0B.a≥-1C.a≥-$\frac{1}{4}$D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角三角形ABC中,sinA=$\frac{3}{5}$,tan(A-B)=-$\frac{1}{3}$,則3tanC的值為79.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.y=$\sqrt{3}$cosx+sinx的最大值為2.

查看答案和解析>>

同步練習(xí)冊答案