分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值和最小值.
解答 解:由z=x+2y,得$y=-\frac{1}{2}x+\frac{z}{2}$,作出不等式對(duì)應(yīng)的可行域,
平移直線$y=-\frac{1}{2}x+\frac{z}{2}$,由平移可知當(dāng)直線$y=-\frac{1}{2}x+\frac{z}{2}$經(jīng)過點(diǎn)A時(shí),直線$y=-\frac{1}{2}x+\frac{z}{2}$的截距最小,此時(shí)z取得最小值,由$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=x}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,即A($\frac{1}{2}$,$\frac{1}{2}$),代入z=x+2y,得z=$\frac{1}{2}$+2×$\frac{1}{2}$=$\frac{3}{2}$,
當(dāng)直線$y=-\frac{1}{2}x+\frac{z}{2}$經(jīng)過點(diǎn)B時(shí),直線$y=-\frac{1}{2}x+\frac{z}{2}$的截距最大,此時(shí)z取得最大值,
由$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即B($\frac{1}{2}$,$\frac{3}{2}$),代入z=x+2y=$\frac{1}{2}$+2×$\frac{3}{2}$=$\frac{7}{2}$,
則$\frac{\frac{7}{2}}{\frac{3}{2}}$=$\frac{7}{3}$.
即z的最大值是z的最小值的$\frac{7}{3}$倍,
故答案為:$\frac{7}{3}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在無窮多個(gè)角α和β,使得sin(α+β)=sinαcosβ-cosαsinβ | |
B. | 存在這樣的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ | |
C. | 對(duì)任意角α和β,都有cos(α+β)=cosαcosβ-sinαsinβ | |
D. | 不存在這樣的角α和β,使得sin(α+β)≠sinαcosβ+cosαsinβ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x<1} | B. | {x|x>1} | C. | {x|x>0} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p1 | B. | (¬p1)∨p2 | C. | p1∧p2 | D. | p1∧(¬p2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com