如圖為曲柄連桿結(jié)構(gòu)示意圖,當(dāng)曲柄 OA 在 OB 位置時,連桿端點 P 在 Q 的位置,當(dāng) OA 自 OB 按順時針旋轉(zhuǎn) α 角時,P 和 Q 之間的距離為 x,已知 OA=25cm,AP=125cm,若 OA⊥AP,則 x 等于
 
(精確到0.1cm)
考點:解三角形的實際應(yīng)用
專題:計算題,解三角形
分析:利用OA=25cm,AP=125cm,OA⊥AP,求出OP,利用x=PQ=OA+AP-OP,可得結(jié)論.
解答: 解:∵OA=25cm,AP=125cm,OA⊥AP,
∴OP=
252+1252

∴x=PQ=OA+AP-OP=25+125-
252+1252
≈22.5(cm).
故答案為:22.5 cm.
點評:本題考查利用數(shù)學(xué)知識解決實際問題,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AC=
3
BD,則∠DAB的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|
2x+y≤4
4x-y≥-1
x≥0
y≥0
},點P(x1,y1),Q(x2,y2)且(x1,y1)∈A,(x2,y2)∈A,
a
=(1,-1),則
a
PQ
的最大值為( 。
A、5
B、4
C、3
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體的面對角線長是x,其對角線的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,1),B(2,-1),O為坐標(biāo)原點,動點P(x,y)滿足
OP
=m
OA
+n
OB
,其中m、n∈R,且m2+n2=
1
2
,則動點P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx+1,拋物線x2=ay(a≠0),無論k取何值,直線與拋物線恒有公共點,則a的取值范圍( 。
A、(-∞,+∞)
B、(-∞,0)
C、(0,+∞)
D、[-4,0)∪(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(tanx)=
1
3sin2x+cos2x
,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=
1
8
x2與雙曲線
y2
a2
-x2=1(a>0)有共同的焦點F,O為坐標(biāo)原點,P在x軸上方且在雙曲線上,則
OP
FP
的最小值為(  )
A、2
3
-3
B、3-2
3
C、
7
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a2+b2=2013c2,求證:
2sinAsinBcosC
sin2(A+B)
為定值.

查看答案和解析>>

同步練習(xí)冊答案