A. | p2,p3 | B. | p1,p2 | C. | p2,p4 | D. | p3,p4 |
分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡求得z,然后逐一核對四個命題得答案.
解答 解:由$\frac{1+z}{1-z}$=i,得1+z=(1-z)i=i-zi,
∴(1+i)z=-1+i,則z=$\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{(1+i)(1-i)}=i$,
∴|z|=1,故p1錯誤;z2=i2=-1,故p2正確;$\overline{z}=-i$,故p3錯誤;z的虛部為1,故p4正確.
故選:C.
點評 本題考查命題的真假判斷與應(yīng)用,考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0] | B. | [-1,2] | C. | $[{0,\sqrt{2}}]$ | D. | $[{-1,\sqrt{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\frac{4π}{3}})$ | B. | $({1,\frac{2π}{3}})$ | C. | $({1,\frac{π}{3}})$ | D. | $({1,-\frac{7π}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com