2.方程$\frac{x^2}{a}$+$\frac{y^2}$=1(a,b∈{1,2,3,4,…,2013})所表示的曲線中,離心率最小且焦點(diǎn)在x軸的橢圓方程為$\frac{{x}^{2}}{2013}$+$\frac{{y}^{2}}{2012}$=1.

分析 橢圓的焦點(diǎn)在x軸上,a>b,由于a,b∈{1,2,3,4,…,2013},可得$\frac{a}$∈$[\frac{1}{2013},\frac{2012}{2013}]$.即可得出.

解答 解:橢圓的焦點(diǎn)在x軸上,a>b,
∵a,b∈{1,2,3,4,…,2013},∴$\frac{a}$∈$[\frac{1}{2013},\frac{2012}{2013}]$.
e=$\sqrt{1-\frac{a}}$≥$\sqrt{1-\frac{2012}{2013}}$=$\frac{\sqrt{2013}}{2013}$,當(dāng)b=2012,a=2013時(shí)取等號.
∴此時(shí)的橢圓方程為:$\frac{{x}^{2}}{2013}$+$\frac{{y}^{2}}{2012}$=1.
故答案為:$\frac{{x}^{2}}{2013}$+$\frac{{y}^{2}}{2012}$=1.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.“a=3”是“直線ax+2y+3a=0和直線3x+(a-1)y+7=0平行”的充分不必要條件.(選“充分不必要”“必要不充分”“充要”“既不充分也不必要”填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知O是銳角△ABC的外接圓圓心,$tanA=\frac{{\sqrt{2}}}{2}$,若$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=2m\overrightarrow{AO}$,則m的值為( 。
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{6}$D.$\frac{{\sqrt{3}}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若α,β滿足-π≤α≤β≤$\frac{π}{2}$,則α-β的取值范圍為[-$\frac{3π}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.討論下列函數(shù)的奇偶性.
(1)y=-3x3+x;       
(2)y=-x2+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列對應(yīng)關(guān)系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根
②A=R,B=R,f:x→x的倒數(shù)
③A=R,B=R,f:x→x2-2
④A={-1,0,1},B={-1,0,1},f:x→x2其中是A到B的映射的是( 。
A.①③B.②④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.f(x)是定義在R上的奇函數(shù),且f(x-3)=f(x+3),當(dāng)0<x<3時(shí),f(x)=2-log2(x+2),則當(dāng)0<x<6時(shí),不等式(x-3)f(x)>0的解集是( 。
A.(0,2)∪(3,4)B.(0,2)∪(4,5)C.(2,3)∪(4,5)D.(2,3)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000
名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?0分到140分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)估計(jì)該校的2000名學(xué)生這次考試成績的平均分(可用中值代替各組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第一組和第六組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,已知側(cè)棱與底面垂直,∠CAB=90°,且AC=1,AB=2,E為BB1的中點(diǎn),M為AC上的一點(diǎn),$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AC}$.
(Ⅰ)證明:CB1∥平面A1EM;
(Ⅱ)若A1A的長度為$\sqrt{2}$,求三棱錐E-C1A1M的體積.

查看答案和解析>>

同步練習(xí)冊答案