5.已知函數(shù)f(x)滿足2f(-x)+f(x)=x,求f(x)的解析式.

分析 通過-x換x,構(gòu)造方程組,然后求出函數(shù)的解析式即可.

解答 解:根據(jù)題意2f(-x)+f(x)=x,①
用-x代替x可得2f(x)+f(-x)=-x,②
①②消去f(-x)可得:3f(x)=-3x,
∴f(x)=-x,
故答案為:f(x)=-x.

點(diǎn)評 本題考查函數(shù)解析式的應(yīng)用問題,解題時應(yīng)注意x的任意性,方程組的思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上任一點(diǎn)P與橢圓上兩定點(diǎn)A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,|F1F2|=6,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=1+$\frac{2}{3x}$的圖象與y=g(x)的圖象關(guān)于x軸對稱,則g(x)=-1-$\frac{2}{3x}$,函數(shù)f(x)與y=h(x)關(guān)于原點(diǎn)對稱,則h(x)=-1+$\frac{2}{3x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)為R上的奇函數(shù),g(x)為R上的偶函數(shù),且f(x)、g(x)不恒為零,對于以下判斷:①f(x)+g(x)為奇函數(shù);②f(x)-g(x)為奇函數(shù);③f(x)•g(x)為奇函數(shù);④$\frac{f(x)}{g(x)}$為奇函數(shù).其中判斷正確的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x3-bx2+x在(0,$\frac{2}{3}$)內(nèi)有極值,則b的范圍是($\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且f(x+1)+x-2=x2-3;
(1)求f(x)的解析式;
(2)方程f(x)-k=0的兩個實(shí)根x1,x2滿足x${\;}_{1}^{2}$+x${\;}_{2}^{2}$=45,求k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合A={1,4,m},集合B={1,m2},若B⊆A,則實(shí)數(shù)m∈{0,2,-2}.

查看答案和解析>>

同步練習(xí)冊答案