是空間三條不同的直線,則下列命題正確的是( 。
A.,則B.,則
C.,則共面D.相交,相交,則共面
B
①反例正方體一個頂點的三條棱,A錯;②異面直線所成角的定義,直線垂直定義,B對;③反例三棱柱的三條側(cè)棱,C錯;④反例正方體一個頂點的三條棱,D錯。選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在棱長為2的正方體中,是底面的中心,分別是的中點,那么異面直線所成角的余弦值等于 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD的底面是矩形,AB1,AD2,SA1,   且SA⊥底面ABCD,若P為直線BC上的一點,使得
(1)求證:P為線段BC的中點;
(2)求點P到平面SCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖6,平行四邊形中,,,沿
起,使二面角是大小為銳角的二面角,設(shè)在平面上的射影為
(1)當(dāng)為何值時,三棱錐的體積最大?最大值為多少?
(2)當(dāng)時,求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖,在三棱錐中,
,
設(shè)頂點在底面上的射影為
(Ⅰ)求證:;
(Ⅱ)設(shè)點在棱上,且,
試求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)
如圖所示的多面體中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)證明:平面
(Ⅱ)設(shè)二面角的平面角為,求的值;
(Ⅲ)的中點,在上是否存在一點,使得∥平面?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,與平面所成角的余弦值為( ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

矩形中,的中點,為邊上一動點,則的最大值為( 。
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

底面是正方形的四棱錐ABCDE中,AE⊥底面BCDE,且AECD,G、H分別是BEED的中點,則GH到平面ABD的距離是______

查看答案和解析>>

同步練習(xí)冊答案