4.已知$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,$\overrightarrow c$=$\overrightarrow a$-2$\overrightarrow b$,則下列結(jié)論正確的是( 。
A.$\overrightarrow a$∥$\overrightarrow c$B.$\overrightarrow b$∥$\overrightarrow c$C.$\overrightarrow a$⊥$\overrightarrow c$D.$\overrightarrow b$⊥$\overrightarrow c$

分析 根據(jù)向量數(shù)量積的應(yīng)用,結(jié)合向量垂直的關(guān)系進行判斷即可.

解答 解:∵$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,
∴$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$||$\overrightarrow b$|cos60°=1×1×$\frac{1}{2}$=$\frac{1}{2}$,
則$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow a$•($\overrightarrow a$-2$\overrightarrow b$)=$\overrightarrow a$2-2$\overrightarrow a$•$\overrightarrow b$=1-2×$\frac{1}{2}$=1-1=0,
則$\overrightarrow a$⊥$\overrightarrow c$,
故選:C.

點評 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)向量垂直和向量數(shù)量積的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.用符號“⇒,?,?”表示下列事件的推出關(guān)系:
(1)α:實數(shù)x滿足x2=4,β:x=2,α?β;
(2)α:x<2,β:x<3,α⇒β;
(3)α:A?B,β:A∪B=A,α?β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.計算:C${\;}_{100}^{98}$=4950(用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{{\begin{array}{l}{y≥|x|-2}\\{{x^2}≤4-y}\end{array}}\right.$,則z=3x+y的取值范圍是( 。
A.[-$\frac{11}{4}$,6]B.[-2,$\frac{25}{4}$]C.[-6,6]D.[-6,$\frac{25}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某市因交通堵塞,在周一到周五進行交通限行,周一、周三、周五雙號限行,周二、周四單號限行.某單位有雙號車兩輛,單號車兩輛,在限行前,雙號車每輛車每天出車的概率為$\frac{2}{3}$,單號車每輛車每天出車的概率為$\frac{1}{2}$,且每輛車出車是相互獨立的.
(1)若該單位的某員工需要在周一和周二兩天中的一天用車,且這兩天用車的可能性相同,求他能出車的概率;
(2)設(shè)X表示該單位在周一與周二兩天的出車臺數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線C:x2=2py(p>0),過點M(0,-2)可作C的兩條切線,切點分別為A,B,若直線AB恰好過C的焦點,則P的值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sinA=acosC,c=$\sqrt{3}$.
(1)求角C;
(2)求acosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),其左,右焦點分別為F1,F(xiàn)2,若以右焦點F2(c,0)(c>0)為圓心作半徑為c的圓與雙曲線的右支的一個交點為M,且直線F1M恰好與圓相切,則雙曲線的離心率為$\sqrt{3}+1$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2-a)x-2lnx+a-2,g(x)=xe1-x
(1)若函數(shù)f(x)在區(qū)間(0,$\frac{1}{2}$)無零點,求實數(shù)a的最小值
(2)若對任意給定的x0∈(0,e],方程f(x)=g(x0)在(0,e]上總存在兩個不等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案