1.已知直線(xiàn)l1:x-y=5,直線(xiàn)l2:x+2y=3,直線(xiàn)l1與l2的夾角的余弦值$\frac{\sqrt{10}}{10}$.

分析 利用兩條直線(xiàn)的夾角公式求得tanθ的值,再利用同角三角函數(shù)的基本關(guān)系求得cosθ 的值.

解答 解:設(shè)直線(xiàn)l1與l2的夾角為銳角θ,∵直線(xiàn)l1與的斜率為1,直線(xiàn)l2的斜率為-$\frac{1}{2}$,
∴tanθ=|$\frac{-\frac{1}{2}-1}{1+(-\frac{1}{2})•1}$|=3=$\frac{sinθ}{cosθ}$,sin2θ+cos2θ=1,故有cosθ=$\frac{\sqrt{10}}{10}$,
故答案為:$\frac{\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題主要考查兩條直線(xiàn)的夾角公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),過(guò)直線(xiàn)l:x=2上一點(diǎn)P作橢圓的切線(xiàn),切點(diǎn)為A,當(dāng)P點(diǎn)在x軸上時(shí),切線(xiàn)PA的斜率為±$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求△POA面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.復(fù)數(shù)z=-3+i在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若函數(shù)滿(mǎn)足f(x)=x,把此時(shí)的實(shí)數(shù)x稱(chēng)為函數(shù)y=f(x)的不動(dòng)點(diǎn).
(1)若函數(shù)y=xm-3的一個(gè)不動(dòng)點(diǎn)是2,求m的值;
(2)若函數(shù)g(x)=x2+(a-4)x-3b是區(qū)間[b-a,b]上的偶函數(shù)
①求a、b的值,并求出這個(gè)函數(shù)的不動(dòng)點(diǎn);
②判斷函數(shù)F(x)=g(x+1)-g(x-1)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知命題p:?x∈[-1,1],m≤x2,命題q:?x∈R,x2+mx+1>0,若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],有( 。
A.最大值0,最小值-8B.最大值5,最小值-4
C.最大值5,最小值-3D.最大值2$\sqrt{2}$-1,最小值-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=loga$\frac{1-x}{1+x}$,(a>0且a≠1).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若x∈(0,1),比較函數(shù)f(x)=x2,g(x)=x-2,h(x)=x${\;}^{\frac{1}{2}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2lnx+$\frac{1}{3}$x3-$\frac{a}{2}$x2+3x.
(1)若a=2,求函數(shù)g(x)=$\frac{f(x)}{x}$的圖象在點(diǎn)(1,g(1))處的切線(xiàn)方程;
(2)若函數(shù)f(x)在($\frac{1}{e}$,e)內(nèi)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案