分析 (1)根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)建立不等式進(jìn)行求解即可.
(2)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷.
解答 解:(1)要使函數(shù)有意義,則$\frac{1-x}{1+x}$>0,
即(x-1)(x+1)<0,
即-1<x<1,即函數(shù)的定義域?yàn)椋?1,1);
(2)∵函數(shù)的定義域?yàn)椋?1,1);
∴定義域關(guān)于原點(diǎn)對(duì)稱,
則f(-x)+f(x)=loga$\frac{1+x}{1-x}$+loga$\frac{1-x}{1+x}$=loga($\frac{1+x}{1-x}$•$\frac{1-x}{1+x}$)=loga1=0,
即f(-x)=-f(x),
則函數(shù)f(x)是奇函數(shù).
點(diǎn)評(píng) 本題主要考查函數(shù)定義域的求解以及函數(shù)奇偶性的判斷,利用對(duì)數(shù)的性質(zhì)結(jié)合函數(shù)奇偶性的定義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}-1}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com