18.在△ABC中,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則“$\overrightarrow{a}$•$\overrightarrow$>0”是“△ABC為銳角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{a}$•$\overrightarrow$>0,可得A∈$(0,\frac{π}{2})$,由“△ABC為銳角三角形”⇒A∈$(0,\frac{π}{2})$,反之不成立.即可判斷出結(jié)論.

解答 解:∵$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{a}$•$\overrightarrow$=|AB||AC|cosA>0⇒A∈$(0,\frac{π}{2})$,
由“△ABC為銳角三角形”⇒A∈$(0,\frac{π}{2})$,反之不成立.
∴$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則“$\overrightarrow{a}$•$\overrightarrow$>0”是“△ABC為銳角三角形”的必要不充分條件.
故選:B.

點評 本題考查了數(shù)量積運算性質(zhì)、三角形形狀的判定方法,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.隨著網(wǎng)絡信息時代的來臨,支付寶已經(jīng)實現(xiàn)了許多功能,如購物付款、加油付款、理財產(chǎn)品等,使得越來越多的人在生活中使用手機支付的便捷功能,阿里巴巴公司研究人員對某地區(qū)年齡在10~60歲間的n位市民對支付寶的使用情況作出調(diào)查,并將調(diào)查的人員的年齡情況繪制成頻率分布直方圖如圖所示.

(1)若被調(diào)查的年齡在20~30歲間的市民有600人,求被調(diào)查的年齡在40歲以上(含40歲)的市民人數(shù);
(2)若按分層抽樣的方法從年齡在[20,30)以及[40,50)內(nèi)的市民中隨機抽取5人,再從這5人中隨機抽取2人進行調(diào)查,求抽取的2人中,至少1人年齡在[20,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設$\overrightarrow{a_1},\overrightarrow{a_2},…,\overrightarrow{a_n},…$是一組向量,若$\overrightarrow{{a}_{1}}$=(-2015,-12),且$\overrightarrow{{a}_{n}}$-$\overrightarrow{{a}_{n-1}}$=(1,1),n∈N*,且n≥2,則其中模最小的一個向量的序號n=1014或1015.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某班班會準備從含甲、乙、丙的7名學生中選取4人發(fā)言,要求甲、乙兩人至少有一個發(fā)言,且甲、乙都發(fā)言時丙不能發(fā)言,則甲、乙兩人都發(fā)言且發(fā)言順序不相鄰的概率為( 。
A.$\frac{1}{8}$B.$\frac{2}{17}$C.$\frac{3}{26}$D.$\frac{3}{28}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)設復數(shù)z滿足|z|=1,且(3+4i)•z為純虛數(shù),求$\overline{z}$;
(2)已知(2$\sqrt{x}$-$\frac{1}{{\sqrt{x}}}}$)n的展開式中所有二項式系數(shù)之和為64,求展開式的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=2tan(3x-$\frac{π}{6}$)的最小正周期是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知變量x,y之間的回歸直線方程為$\hat y$=bx+a(a>0,b>0),且樣本點的中心為(4,1),則a+4b的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若執(zhí)行如圖的程序框圖,則輸出的k值是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cos(θ-$\frac{π}{3}$)
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)若點P(x,y)是直線l上位于圓內(nèi)的動點(含端點),求$\sqrt{3}$x+y的最大值和最小值.

查看答案和解析>>

同步練習冊答案