4.某觀測站C在城A的南偏西20?的方向上,由A城出發(fā)有一條公路,走向是南偏東40?,在C處測得距C為31千米的公路上B處有一人正沿公路向A城走去,走了20千米后,到達D處,此時C、D間距離為21千米,則此人還需走15千米到達A城.

分析 先求出cos∠BDC,進而設(shè)∠ADC=α,則sinα,cosα可求,在△ACD中,由正弦定理求得得AD,答案可得.

解答 解:由已知得CD=21,BC=31,BD=20,
在△BCD中,由余弦定理得 cos∠BDC=$\frac{2{1}^{2}+2{0}^{2}-3{1}^{2}}{2×21×20}$=-$\frac{1}{7}$,
設(shè)∠ADC=α,則 cosα=$\frac{1}{7}$,sinα=$\frac{4\sqrt{3}}{7}$,
在△ACD中,由正弦定理得$\frac{AD}{sin(\frac{π}{3}+α)}$=$\frac{21}{sin\frac{π}{3}}$,
AD=$\frac{42}{\sqrt{3}}$sin($\frac{π}{3}$+α)=$\frac{42}{\sqrt{3}}$($\frac{\sqrt{3}}{2}$×$\frac{1}{7}$+$\frac{1}{2}$×$\frac{4\sqrt{3}}{7}$)=15,
故答案為:15.

點評 本題主要考查了解三角新的實際應(yīng)用.解題的關(guān)鍵是利用正弦定理,利用邊和角的關(guān)系求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=$\frac{2}{1-i}$-2i,則z的共軛復(fù)數(shù)是( 。
A.1-iB.1+2iC.1-2iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.根據(jù)如圖框圖,當輸入x為6時,輸出的y=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,a、b、c分別是角A、B、C的對邊,已知a2cosAsinB=b2sinAcosB,則△ABC為(  )
A.等腰三角形B.等腰直角三角形
C.直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a,b均為正實數(shù),則(a+$\frac{1}$)(b+$\frac{4}{a}$)的最小值為( 。
A.3B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.小明在某社交網(wǎng)絡(luò)的朋友圈中,向在線的甲、乙、丙隨機發(fā)放紅包,每次發(fā)放1個,甲、乙、丙每人每次搶到紅包的概率均為$\frac{1}{3}$.
(1)若小明發(fā)放1元的紅包2個,求甲最多搶到1個紅包的概率;
(2)若小明共發(fā)放3個紅包,第一次發(fā)放5元,第二次發(fā)放5元,第三次發(fā)放10元,記甲搶到紅包的總金額為ζ元,求ζ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x>0,y>0,且x2+$\frac{4}{y}$=1,則$\frac{{x}^{2}}{y}$的最大值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一個口袋中裝有大小相同的2個白球和4個黑球.
(1)采取放回抽樣方式,從中摸出兩個小球,則兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個小球,則兩球恰好顏色不同的概率;
(3)采取不放回抽樣方式,從中摸出兩個小球,則摸得白球至少有一個的概率.

查看答案和解析>>

同步練習(xí)冊答案