【題目】已知實數(shù)滿足不等式組,若的最大值為8,則z的最小值為(

A.2B.1C.0D.1

【答案】D

【解析】

作出不等式組所表示的平面區(qū)域,結(jié)合平面區(qū)域,根據(jù)目標(biāo)的最大值,分類討論求得的值,進(jìn)而求得目標(biāo)函數(shù)的最小值,得到答案.

由題意,作出不等式組所表示的可行域,如圖所示,

,解得;由,解答;

,解得

(1)若目標(biāo)函數(shù)取得最大值的最優(yōu)解為時,代入目標(biāo)函數(shù),可得,

此時目標(biāo)函數(shù),此時代入點,可得,不符合題意;

(2)若目標(biāo)函數(shù)取得最大值的最優(yōu)解為時,代入目標(biāo)函數(shù),可得

此時目標(biāo)函數(shù),此時代入點,可得,不符合題意;

(3)若目標(biāo)函數(shù)取得最大值的最優(yōu)解為時,代入目標(biāo)函數(shù),可得,

此時目標(biāo)函數(shù),此時點能使得目標(biāo)函數(shù)取得最小值,代入點

最小值為;

答案:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是橢圓上的兩點,線段的中點在直線.

1)當(dāng)直線的斜率存在時,求實數(shù)的取值范圍;

2)設(shè)是橢圓的左焦點,若橢圓上存在一點,使,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)設(shè),求關(guān)于的函數(shù)時的值域的表達(dá)式;

(3)若關(guān)于的不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.

圖1 圖2

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知(其中.

1)當(dāng)時,計算;

2)記,試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量,滿足:的夾角為,||5,的夾角為||3,則的最大值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

1)求直線和曲線的普通方程;

2)已知點,且直線和曲線交于兩點,求 的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(α為參數(shù))經(jīng)過伸縮變換得到曲線C2.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.

(1)C2的普通方程;

(2)設(shè)曲線C3的極坐標(biāo)方程為,且曲線C3與曲線C2相交于M,N兩點,點P(1,0),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A0,1),拋物線Cy2axa0)的焦點為F,連接FA,與拋物線C相交于點M,延長FA,與拋物線C的準(zhǔn)線相交于點N,若|FM||MN|12,則實數(shù)a的值為_____

查看答案和解析>>

同步練習(xí)冊答案