考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(I)由點(diǎn)(n,S
n),均在函數(shù)y=2
x+r(r為常數(shù))的圖象上.可得
Sn=2n+r,當(dāng)n=1時(shí),a
1=2+r,當(dāng)n≥2時(shí),a
n=S
n-S
n-1=2
n-1,由于數(shù)列{a
n}是等比數(shù)列,可得
=a1a3,解得r.
(II)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:
解:(I)∵點(diǎn)(n,S
n),均在函數(shù)y=2
x+r(r為常數(shù))的圖象上.
∴
Sn=2n+r,
當(dāng)n=1時(shí),a
1=2+r,
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=2
n+r-(2
n-1+r)=2
n-1,
∴a
2=2,a
3=4,
∵數(shù)列{a
n}是等比數(shù)列,∴
=a1a3,
∴2
2=(2+r)×4,
解得r=-1,
∴a
1=1,
∴
an=2n-1,r=-1.
(II)
bn==
,
∴數(shù)列{b
n}的前n項(xiàng)和T
n=
+++…+
,
∴
Tn=
++…+
+,
∴
Tn=
++
+…+
-
=
-
=1-
,
∴T
n=2-
.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”、遞推式的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.