已知二項(xiàng)式(x-
1
x
n展開式中的第5項(xiàng)為常數(shù)項(xiàng),則展開式中各項(xiàng)的二項(xiàng)式系數(shù)之和為
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:二項(xiàng)式定理
分析:根據(jù)展開式中的第5項(xiàng)為T4+1=Cn4•xn-4
1
x2
,是常數(shù)項(xiàng),可得n-4-2=0,求得n的值,可得展開式中各項(xiàng)的二項(xiàng)式系數(shù)之和2n的值.
解答: 解:∵二項(xiàng)式(x-
1
x
n展開式中的第5項(xiàng)為T4+1=Cn4•xn-4
1
x2
,是常數(shù)項(xiàng),
∴n-4-2=0,
∴n=6,展開式中各項(xiàng)的二項(xiàng)式系數(shù)之和為 26=64,
故答案為:64.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin2x-
3
cos2x+n-1(n∈N*).
(1)在銳角△ABC中,a,b,c分別是角A,B,C的對(duì)邊,當(dāng)n=1時(shí),f(A)=
3
,且c=3,△ABC的面積為3
3
,求b的值.
(2)若f(x)的最大值為an(an為數(shù)列{an}的通項(xiàng)公式),又?jǐn)?shù)列{bn}滿足bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=-6,S5=S6
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{2n-1•an}的前n項(xiàng)和為Tn,求不等式Tn-n•2n+1+100>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=
2
,且PC⊥CD,BC⊥PA,E是PB的中點(diǎn).
(Ⅰ)求證:平面PBC⊥平面EAC;
(Ⅱ)若平面PAC與平面EAC的夾角的余弦值為
3
3
,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=2x+r(r為常數(shù))的圖象上.(Ⅰ)求an和r的值;
(Ⅱ)記  bn=
n
an+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=5x+3,則f(1)+f(2)+…+f(30)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+2Sn•Sn-1=0(n≥2,且n∈N),a1=
1
2

(1)求證:{
1
Sn
}是等差數(shù)列;
(2)若bn=Sn•Sn+1,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過(guò)點(diǎn)P(-4,3),
(1)求
sin(π-α)+cos(-α)
tan(π+α)
的值;      
(2)求sinαcosα+cos2α-sin2α+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M與點(diǎn)F(3,0)的距離比它到直線x+5=0的距離小2,則點(diǎn)M的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案