分析 令f(x)=x2+(m-3)x+m,由題意利用二次函數(shù)的性質(zhì)求得m的范圍.
解答 解:要使方程x2+(m-3)x+m=0的兩個根都是正數(shù),令f(x)=x2+(m-3)x+m,
則有$\left\{\begin{array}{l}{△{=(m-3)}^{2}-4m>0}\\{-\frac{m-3}{2}>0}\\{f(0)=m>0}\end{array}\right.$,由此求得0<m<1.
點評 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{7π}{12}$ | B. | x=$\frac{7π}{12}$ | C. | x=$\frac{π}{6}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若am2<bm2,則a<b”的逆命題是真命題 | |
B. | 已知x∈R,則“x>2”是“x>1”的必要不充分條件 | |
C. | 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題 | |
D. | 命題“?x∈R,使得|x|<1”的否定是:“?x∈R,都有x≤-1或x≥1” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com