9.已知正項數(shù)列{an}的前n項和Sn滿足:Sn2-(n2+n-1)Sn-(n2+n)=0,
(Ⅰ)求S1和S2的值;     
(Ⅱ)求{an}的通項公式an
(Ⅲ)若令bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,設(shè)數(shù)列{bn}的前n項和為Tn.求證:$\frac{1}{18}$≤Tn<$\frac{5}{64}$.

分析 (I)由正項數(shù)列{an}的前n項和Sn滿足:Sn2-(n2+n-1)Sn-(n2+n)=0,n=1,2時可得:${S}_{1}^{2}$-S1-2=0,${S}_{2}^{2}-5{S}_{2}$-6=0,解出即可得出.
(II)由Sn2-(n2+n-1)Sn-(n2+n)=0,可得[Sn-(n2+n)](Sn+1)=0.根據(jù){an}是正項數(shù)列,可得Sn>0,Sn=n2+n利用遞推關(guān)系即可得出.
(III)bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$=$\frac{n+1}{(n+2)^{2}×4{n}^{2}}$=$\frac{1}{16}$$[\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}}]$,利用“裂項求和”方法與數(shù)列的單調(diào)性即可得出.

解答 (I)解:由正項數(shù)列{an}的前n項和Sn滿足:Sn2-(n2+n-1)Sn-(n2+n)=0,n=1,2時可得:${S}_{1}^{2}$-S1-2=0,${S}_{2}^{2}-5{S}_{2}$-6=0,
解得a1=S1=2,S2=6.
(II)解:由Sn2-(n2+n-1)Sn-(n2+n)=0,可得[Sn-(n2+n)](Sn+1)=0.
∵{an}是正項數(shù)列,
∴Sn>0,Sn=n2+n.
n≥2時,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
綜上,數(shù)列{an}的通項an=2n.
(III)證明:bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$=$\frac{n+1}{(n+2)^{2}×4{n}^{2}}$=$\frac{1}{16}$$[\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}}]$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{16}$$[(1-\frac{1}{{3}^{2}})$+$(\frac{1}{{2}^{2}}-\frac{1}{{4}^{2}})$+$(\frac{1}{{3}^{2}}-\frac{1}{{5}^{2}})$+…+$(\frac{1}{(n-1)^{2}}-\frac{1}{(n+1)^{2}})$+$(\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}})]$=$\frac{1}{16}$$[1+\frac{1}{4}-\frac{1}{(n+1)^{2}}-\frac{1}{(n+2)^{2}}]$
∴T1≤Tn<$\frac{1}{16}$×$\frac{5}{4}$=$\frac{5}{64}$.
∴$\frac{1}{18}$≤Tn$<\frac{5}{64}$.

點評 本題考查了遞推關(guān)系、“裂項求和”方法、數(shù)列的單調(diào)性,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復(fù)數(shù)z=1-i,則$\frac{{z}^{2}-2z}{z-1}$的模是(  )
A.2iB.2C.-2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若兩個平面內(nèi)分別有一條直線,這兩條直線互相平行,則這兩個平面的公共點個數(shù)( 。
A.有限個B.無限個C.沒有D.沒有或無限個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x3-3ax+2(a∈R).
(1)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,∠A=120°.若該三角形三條邊長構(gòu)成一個公差為4的等差數(shù)列,則△ABC的周長為30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.曲線y=4x-x3在點(1,3)處的切線的傾斜角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+2ln(1-x)(a為常數(shù)).
(1)若f(x)在x=-1處有極值,求a的值并判斷x=-1是極大值點還是極小值點;
(2)若f(x)在[-3,-2]上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如果角θ的終邊經(jīng)過點(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}}$),則sinθ=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知θ為銳角,θ取什么值時,tanθ+cotθ的值最小?最小值是多少?

查看答案和解析>>

同步練習冊答案