20.設(shè)f(x)是定義在R上的函數(shù),對(duì)x∈R都有f(-x)=f(x),f(2+x)=f(2-x),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

分析 可判斷f(x)是偶函數(shù),且周期為4;作函數(shù)f(x)與y=loga(x+2)的圖象,從而可得$\left\{\begin{array}{l}{g(2)<3}\\{g(6)>3}\end{array}\right.$,從而解得.

解答 解:∵f(-x)=f(x),∴f(x)是偶函數(shù);
∵f(2+x)=f(2-x),∴f(x)的圖象關(guān)于x=2對(duì)稱,
∴f(x)的周期為4;
作函數(shù)f(x)與y=loga(x+2)的圖象如下,
結(jié)合圖象可知,
必須且只需$\left\{\begin{array}{l}{g(2)<3}\\{g(6)>3}\end{array}\right.$,
即$\left\{\begin{array}{l}{lo{g}_{a}4<3}\\{lo{g}_{a}8>3}\end{array}\right.$,
解得,$\root{3}{4}$<a<2,
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了數(shù)形結(jié)合的思想方法應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,直線PC與底面ABCD所成的角45°,E,F(xiàn),M分別是BC,PC,PA的中點(diǎn).
(1)PC∥平面MBD;
(2)證明:AE⊥PD;
(3)求二面角E-AF-C的余弦值;
(4)若PA=2,求棱錐C-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{x}{lnx}-ax$.
(1)若函數(shù)f(x)的圖象在x=e2處的切線與y軸垂直,求實(shí)數(shù)a的值;
(2)a=1,x>1時(shí),求證:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)點(diǎn)P是線段EF上運(yùn)動(dòng),且$\frac{EP}{PF}$=2,求三棱錐E-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的各個(gè)面的面積中,最小的值為( 。
A.2$\sqrt{5}$B.8C.4$\sqrt{5}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱柱ABCD-A1B1C1D1中,BB1⊥底面ABCD,AD∥BC,∠BAD=90°,AC⊥BD.
(Ⅰ)求證:B1C∥平面ADD1A1;
(Ⅱ)求證:AC⊥B1D;
(Ⅲ)若AD=2AA1,判斷直線B1D與平面ACD1是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知sin($\frac{3π}{2}$+α)=$\frac{3}{5}$,則sin($\frac{π}{2}$+2α)=( 。
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若隨機(jī)變量X~N(μ,σ2),且P(X>5)=P(X<-1)=0.2,則P(2<X<5)=0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.執(zhí)行如圖的程序框圖,則輸出的i=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案