【題目】如圖1所示,在中, , , 的平分線,點在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設(shè)點的中點.

圖1 圖2

(1)求證: 平面;

(2)在圖2中,若平面,其中為直線與平面的交點,求三棱錐的體積.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)的中點,連接,證明,利用平面與平面垂直的性質(zhì)證明平面;(2)過點交于點,因為平面平面, 平面,所以平面,求得,利用棱錐的體積公式,即可求三棱錐的體積.

試題解析:(1)在題圖1中,因為, , ,所以

因為的平分線,所以

所以

又因為, ,所以

,所以,即

在題圖2中,因為平面平面,平面平面, 平面,

所以平面

(2)在題圖2中,因為平面, 平面,平面平面,

所以

因為點在線段上, ,點的中點,所以

過點交于點

因為平面平面 平面,所以平面

由條件得

,

所以三棱錐的體積為

【方法點晴】本題主要考查線面垂直的判定定理及面面垂直的性質(zhì)、棱錐的體積公式,屬于難題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進行轉(zhuǎn)化,轉(zhuǎn)化時要正確運用有關(guān)的定理,找出足夠的條件進行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、為橢圓)的左、右焦點,點為橢圓上一點,且

(1)求橢圓的標準方程;

(2)若圓是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點、,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù),滿足約束條件,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過兩點 ,且圓心在直線

(Ⅰ)求圓的標準方程;

(Ⅱ)直線過點且與圓有兩個不同的交點, ,若直線的斜率大于0,求的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過點,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點的直線與圓相切,且與直線垂直,則( )

A. 2 B. 1 C. D.

【答案】A

【解析】因為點P(2,2)滿足圓的方程,所以P在圓上,

又過點P(2,2)的直線與圓相切,且與直線axy+1=0垂直,

所以切點與圓心連線與直線axy+1=0平行,

所以直線axy+1=0的斜率為: .

故選A.

點睛:對于直線和圓的位置關(guān)系的問題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來判斷的,解題時不要單純依靠代數(shù)計算,若選用幾何法可使得解題過程既簡單又不容易出錯.

型】單選題
結(jié)束】
23

【題目】設(shè)分別是雙曲線的左、右焦點.若點在雙曲線上,且,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩圓, 的圓心分別為c1,c2,,P為一個動點,且.

(1)求動點P的軌跡方程;

(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C,D,使得C1C=C1D?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校射擊隊的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該選手射擊一次,

(1)命中9環(huán)或10環(huán)的概率.

(2)至少命中8環(huán)的概率.

(3)命中不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓的圓心, 是圓上動點,點在圓的半徑上,且有點上的點,滿足

(1)當在圓上運動時,求點的軌跡方程;

(2)若斜率為的直線與圓相切,與(1)中所求點的軌跡教育不同的兩點 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

(1)由散點圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)利用(1)所求的回歸方程,預(yù)測該市車流量為12萬輛時的濃度.

參考公式:回歸直線的方程是,其中 .

查看答案和解析>>

同步練習(xí)冊答案