分析 利用勾股定理,求出該四棱錐的外接球的半徑,再利用球的體積公式,即可得出結(jié)論.
解答 解:由題意,PO⊥平面ABCD,PO=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
設(shè)該四棱錐的外接球的半徑為R,則R2=12+($\sqrt{3}$-R)2,
∴R=$\frac{2}{\sqrt{3}}$,
∴四棱錐的外接球的體積為$\frac{4}{3}π•(\frac{2}{\sqrt{3}})^{3}$=$\frac{32\sqrt{3}}{27}$π.
故答案為:$\frac{32\sqrt{3}}{27}$π.
點(diǎn)評(píng) 本題考查四棱錐的外接球的體積,考查學(xué)生的計(jì)算能力,求出四棱錐的外接球的半徑是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{27}{190}$ | B. | $\frac{12}{166}$ | C. | $\frac{15}{166}$ | D. | $\frac{27}{166}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{4}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{11π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 40 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com