15.函數(shù)f(x)=$\sqrt{3}$cos2ωx+sinωxcosωx-$\frac{{\sqrt{3}}}{2}$(ω>0),其最小正周期為π
(1)求ω
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{6}}$]上的最小值.

分析 (1)利用三角函數(shù)的公式將函數(shù)進(jìn)行化簡,結(jié)合三角函數(shù)的周期公式進(jìn)行求解即可.
(2)求出角2x+$\frac{π}{3}$的范圍,結(jié)合正弦函數(shù)的單調(diào)性進(jìn)行求解即可.

解答 解:(1)由三角函數(shù)公式化簡可得f(x)=$\sqrt{3}$cos2ωx+sinωxcosωx-$\frac{{\sqrt{3}}}{2}$
=$\frac{\sqrt{3}}{2}$(1+cos2ωx)+$\frac{1}{2}$sin2ωx-$\frac{{\sqrt{3}}}{2}$
=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx
=sin(2ωx+$\frac{π}{3}$)
∵函數(shù)f(x)最小正周期是π,
∴P=$\frac{2π}{2ω}$=π,解得ω=1;
(2)∵ω=1,∴f(x)=sin(2x+$\frac{π}{3}$),
當(dāng)x∈[-$\frac{π}{3},\frac{π}{6}}$],
則-$\frac{π}{3}$≤2x+$\frac{π}{3}$≤$\frac{2π}{3}$,
∴當(dāng)2x+$\frac{π}{3}$=-$\frac{π}{3}$時(shí),函數(shù)取得最小值,此時(shí)最小值為y=sin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的最值,涉及三角函數(shù)的周期公式,利用三角函數(shù)的倍角公式以及輔助角公式進(jìn)行化簡是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a,b是非零實(shí)數(shù),若a<b,則下列不等式成立的是(  )
A.a2<b2B.ab2<a2bC.$\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$D.$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三棱錐的三視圖如圖所示,其中側(cè)視圖是邊長為$\sqrt{3}$的正三角形,則該幾何體的外接球的體積為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列各式的值.
(1)$\root{4}{81×\sqrt{{9}^{\frac{2}{3}}}}$;
(2)($\root{3}{25}$-$\sqrt{125}$)÷$\root{4}{5}$;
(3)$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知三條直線兩兩垂直,下列說法正確的是( 。
A.這三條直線必共點(diǎn)B.這三條直線不可能在同一平面內(nèi)
C.其中必有兩條直線異面D.其中必有兩條直線共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合,則點(diǎn)(-5,-5$\sqrt{3}$)的極坐標(biāo)是$(10,\frac{4π}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若點(diǎn)P(cosα,sinα)在直線y=2x上,則sin2α的值等于(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.(1-2x)5 (1+3x)4展開式中按x的升冪排列的第三項(xiàng)的系數(shù)是( 。
A.-23B.-24C.-25D.-26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個(gè)大型噴水池的中央有一個(gè)強(qiáng)大噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100米到達(dá)點(diǎn)B,在B點(diǎn)測得水柱頂端的仰角為30°(點(diǎn)A、B處和水柱底端在同一水平面上),則水柱的高度是( 。
A.50mB.100mC.120mD.150m

查看答案和解析>>

同步練習(xí)冊答案