16.設(shè)a,b是非零實數(shù),若a<b,則下列不等式成立的是( 。
A.a2<b2B.ab2<a2bC.$\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$D.$\frac{1}{a}$>$\frac{1}$

分析 對于A,B,D舉反例即可說明,對于C根據(jù)不等式的性質(zhì)即可判斷.

解答 解:對于A,若a=-2,b=1則不成立,
對于B:若a=-2,b=-1,則不成立,
對于C:由a<b,兩邊同除以a2b2,則$\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$,故C成立
對于D:若a=-1,b=1,則不成立,

點評 本題考查了不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(z)=$\overline{z}$,且z1=1+5i,z2=-3+2i,則f($\overline{{z}_{1}-{z}_{2}}$)的值是4+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a,b,c分別是角A,B,C的對邊,且$\sqrt{3}$asinB-bcosA=b,
(1)求∠A的大;
(2)若b+c=4,當(dāng)a取最小值時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$\int_{-a}^a{(xcosx+5sinx)}$dx=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AA1=AB=AC=3,BC=2,D是BC的中點,F(xiàn)是CC1上一點,且CF=2,E是AA1上一點,且AE=1.
(1)求證:C1E∥平面ADF;
(2)求證:B1F⊥平面ADF;
(3)求三棱錐D-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列-1,1,-$\frac{9}{5}$,$\frac{27}{7}$,…的一個通項公式為an=(-1)n•$\frac{{3}^{n-1}}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y的取值如表所示,若y與x線性相關(guān),且線性回歸方程為$\hat y=\hat bx+6$,則$\stackrel{∧}$的值為( 。
x123
y645
A.$\frac{1}{10}$B.$\frac{1}{2}$C.$-\frac{1}{10}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,求目標(biāo)函數(shù)z=x-2y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=$\sqrt{3}$cos2ωx+sinωxcosωx-$\frac{{\sqrt{3}}}{2}$(ω>0),其最小正周期為π
(1)求ω
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{6}}$]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案