20.原點與極點重合,x軸正半軸與極軸重合,則點(-5,-5$\sqrt{3}$)的極坐標(biāo)是$(10,\frac{4π}{3})$.

分析 利用$ρ=\sqrt{{x}^{2}+{y}^{2}}$,$tanθ=\frac{y}{x}$,及θ所在的象限即可得出.

解答 解:$ρ=\sqrt{(-5)^{2}+(-5\sqrt{3})^{2}}$=10,tanθ=$\frac{-5\sqrt{3}}{-5}$=$\sqrt{3}$,θ∈$(π,\frac{3π}{2})$.∴θ=$\frac{4π}{3}$.
∴點(-5,-5$\sqrt{3}$)的極坐標(biāo)是$(10,\frac{4π}{3})$.
故答案為:$(10,\frac{4π}{3})$.

點評 本題考查了直角坐標(biāo)化為極坐標(biāo)的方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列-1,1,-$\frac{9}{5}$,$\frac{27}{7}$,…的一個通項公式為an=(-1)n•$\frac{{3}^{n-1}}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線$\sqrt{3}$x+y-2$\sqrt{3}$=0和圓x2+y2=4相交,求弦長?
(必須自己畫圖,草圖即可,需要的字母自己標(biāo)示,無圖者扣分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),e為自然對數(shù)的底數(shù),若函數(shù)f(x)滿足xf′(x)+f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{e}$,則不等式f(x+1)-f(e+1)>x-e的解集是(-1,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=$\sqrt{3}$cos2ωx+sinωxcosωx-$\frac{{\sqrt{3}}}{2}$(ω>0),其最小正周期為π
(1)求ω
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{6}}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知表面積為a2的正方體的外接球的體積為$\frac{\sqrt{2}}{24}$πa3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow a$=(1,sinx),$\overrightarrow b$=(cosx,$\frac{1}{2}$),其中x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(1)若$\overrightarrow a$∥$\overrightarrow b$,求實數(shù)x的值;
(2)若$\overrightarrow a$⊥$\overrightarrow b$,求向量$\overrightarrow a$的模|$\overrightarrow a$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某公司計劃2016年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲、乙電視臺的廣告收費標(biāo)準(zhǔn)分別為500元/分和200元/分,假定甲、乙兩個電視臺為該公司所做的廣告,每分鐘能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是70萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若過點A(m,4)與點B(1,m)的直線與直線x-2y+4=0平行,則m的值為3.

查看答案和解析>>

同步練習(xí)冊答案