14.已知命題p:|x-1|<2和命題q:-1<x<m+1,若p是q的充分不必要條件,則實(shí)數(shù)m的取值范圍(2,+∞).

分析 命題p:|x-1|<2,化為-2<x-1<2,解出x的范圍.根據(jù)p是q的充分不必要條件,即可得出.

解答 解:命題p:|x-1|<2,化為-2<x-1<2,解得-1<x<3.
命題q:-1<x<m+1,
由p是q的充分不必要條件,
∴3<m+1,解得m>2.
則實(shí)數(shù)m的取值范圍(2,+∞).
故答案為:(2,+∞).

點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果復(fù)數(shù)z滿足|z|=1,那么|z-3+i|的最大值是$\sqrt{10}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某班有45名學(xué)生,其中男生25名,現(xiàn)抽取一個(gè)容量為18的樣本,則男女生人數(shù)之差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若tanα=$\frac{24}{7}$,且α是第三象限角,則cosα=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x,y∈R+且2x+y=3,若不等式xy≤(x+2y)•a對(duì)任意x,y∈R+恒成立,則實(shí)數(shù)a的取值范圍是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中b=3,c=2.O為BC的中點(diǎn),則$\overrightarrow{AO}$•$\overrightarrow{BC}$=( 。
A.$\frac{13}{2}$B.$\frac{5}{2}$C.-$\frac{5}{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn,且滿足Sn+Sn+1=3n2+2n,若對(duì)?n∈N*,an<an+1恒成立,則m的取值范圍是(-2,$\frac{5}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=-11,a5+a9=-2,則當(dāng)Sn取最小值時(shí),n等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合M={x|y=$\sqrt{1-\frac{1}{x}}$},N={x|x(x-a)≤0}
(1)若a=2,求M∩N;
(2)若∁UN⊆M,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案