分析 (1)將四個(gè)不同顏色的乒乓球隨機(jī)放入編號(hào)分別為1,2,3,4的四個(gè)盒子中,由分步剩法計(jì)數(shù)原理知共有44種放法,設(shè)事件A表示“編號(hào)為1的盒子為空盒”,則四個(gè)乒乓球可以隨機(jī)放入編號(hào)為2,3,4的三個(gè)盒子中,共有34種放法,由此能求出編號(hào)為1的盒子為空盒的概率.
(2)空盒的個(gè)數(shù)ξ的所有可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出空盒的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).
解答 解:(1)將四個(gè)不同顏色的乒乓球隨機(jī)放入編號(hào)分別為1,2,3,4的四個(gè)盒子中,
由分步剩法計(jì)數(shù)原理知共有44=256種放法,
設(shè)事件A表示“編號(hào)為1的盒子為空盒”,
則四個(gè)乒乓球可以隨機(jī)放入編號(hào)為2,3,4的三個(gè)盒子中,共有34=81種放法,
故編號(hào)為1的盒子為空盒的概率為$P(A)=\frac{81}{256}$.
(2)空盒的個(gè)數(shù)ξ的所有可能取值為0,1,2,3,
則$P({ξ=0})=\frac{A_4^4}{256}=\frac{24}{256}=\frac{3}{32}$,
$P({ξ=1})=\frac{C_4^2C_4^3A_3^3}{256}=\frac{144}{256}=\frac{9}{16}$,
$P({ξ=3})=\frac{C_4^1}{256}=\frac{4}{256}=\frac{1}{64}$,
$P({ξ=2})=\frac{{C_4^1C_4^2A_2^2+\frac{C_4^2C_2^2}{A_2^2}C_4^2A_2^2}}{256}=\frac{84}{256}=\frac{21}{64}$
(或$P({ξ=2})=1-P({ξ=0})-P({ξ=1})-P({ξ=3})=\frac{21}{64}$),
所以ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P | $\frac{3}{32}$ | $\frac{9}{16}$ | $\frac{21}{64}$ | $\frac{1}{64}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (a,0) | B. | (-a,0) | C. | (0,a) | D. | (0,-a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若f(x1)=f(x2),則x1+x2=kπ | |
B. | f(x)的圖象關(guān)于點(diǎn)$({-\frac{3π}{8},0})$對(duì)稱 | |
C. | f(x)的圖象關(guān)于直線$x=\frac{5π}{8}$對(duì)稱 | |
D. | f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長度后得$g(x)=\sqrt{2}sin({2x+\frac{3π}{4}})$的圖象 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow m∥\overrightarrow n$ | B. | $\overrightarrow m⊥\overrightarrow n$ | ||
C. | $\overrightarrow m$與$\overrightarrow n$既不平行也不垂直 | D. | 以上情況均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}={a^2}$ | B. | $\overrightarrow{AB}•\overrightarrow{A{C_1}}=\sqrt{2}{a^2}$ | C. | $\overrightarrow{AB}•\overrightarrow{AO}=\frac{{\sqrt{3}}}{2}{a^2}$ | D. | $\overrightarrow{BC}•\overrightarrow{D{A_1}}={a^2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com