11.非零向量$\overrightarrow a$,$\overrightarrow b$不共線且$\overrightarrow n=2\overrightarrow a+3\overrightarrow b$,向量$\overrightarrow m$同時垂直于$\overrightarrow a$、$\overrightarrow b$,則(  )
A.$\overrightarrow m∥\overrightarrow n$B.$\overrightarrow m⊥\overrightarrow n$
C.$\overrightarrow m$與$\overrightarrow n$既不平行也不垂直D.以上情況均有可能

分析 利用向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:∵向量$\overrightarrow m$同時垂直于$\overrightarrow a$、$\overrightarrow b$,非零向量$\overrightarrow a$,$\overrightarrow b$不共線,
∴$\overrightarrow{m}•\overrightarrow{n}$=2$\overrightarrow{m}•\overrightarrow{a}$+3$\overrightarrow{m}•\overrightarrow$=0,
∴$\overrightarrow{m}$$⊥\overrightarrow{n}$.
故選:B.

點評 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-2)+g(2)=2,f(2)+g(-2)=4,則f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知 $\overrightarrow a$=(2sinx,sinx-cosx),$\overrightarrow b$=($\sqrt{3}$cosx,sinx+cosx),記函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$
(1)求函數(shù)f(x)取最大值時x的取值集合;
(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若a=2csinA,c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將四個不同顏色的乒乓球隨機放入編號分別為1,2,3,4的四個盒子中(每個盒子足夠大).
(1)求編號為1的盒子為空盒的概率;
(2)求空盒的個數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.偶函數(shù)f(x)滿足f(x+1)=f(1-x),且當x∈[0,1]時,f(x)=x,則關(guān)于x的方程f(x)=ln(x+1)的解的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示框圖運行程序,輸出的s等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,則BM與AN所成角的正弦值為$\frac{\sqrt{70}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函數(shù)f(x)=$\vec a•\vec b$(m∈R)的圖象過點M($\frac{π}{12}$,0).
(Ⅰ)若x∈[0,π],求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c.若ccosB+bcosC=2acosB,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,∠C=90°,AC=BC,D,E分別是AC,AB的中點,現(xiàn)將△ABC沿DE折成直二面角A′-DE-B,連接A′B,A′C,F(xiàn)是A′B的中點.
(1)求證:EF∥平面A′CD;
(2)求證:EF⊥BC.

查看答案和解析>>

同步練習冊答案