精英家教網 > 高中數學 > 題目詳情
17.已知映射f:A→B.其中A={1,2,3},f:x→2x.則B={2,4,6}.

分析 直接根據映射的定義,即可得出結論.

解答 解:∵映射f:A→B.其中A={1,2,3},f:x→2x
∴B={2,4,6},
故答案為{2,4,6}.

點評 本題考查映射的概念,正確理解映射的定義是關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.給出下列命題:
(1)兩條平行線與同一平面所成角相等;
(2)與同一平面所成角相等的兩條直線平行;
(3)一條直線與兩個平行平面所成角相等;
(4)一條直線與兩個平面所成角相等,這兩個平面平行.
其中正確的命題是(1)(3).(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.函數$y={log_2}({5+4x-{x^2}})$的單調遞增區(qū)間是(-1,2].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow{m}$與向量$\overrightarrow{n}$的夾角為135°,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow n$與$\overrightarrow q=(1,0)$的夾角為$\frac{π}{2}$,$\overrightarrow p=(cosA,2{cos^2}\frac{C}{2})$,其中∠A,∠B,∠C為三角形三內角,$B=\frac{π}{2}$,求$|\overrightarrow p+\overrightarrow n|$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.下列命題中真命題是( 。
A.若z1+z2=0,則z1,z2共軛B.若z1+z2=0,則${z_2},\overline{z_1}$共軛
C.若z1-z2=0,則z1,z2共軛D.若z1-z2=0,則${z_2},\overline{z_1}$共軛

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知函數f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數g(x)=$\frac{4}{5}$-f(1-x),則函數y=f(x)-g(x)的零點的個數為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列說法中,正確的是( 。
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.已知x∈R,則“x2-2x-3=0”是“x=3”的必要不充分條件
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.命題p:?x∈R,x>sinx的否定形式為?x∈R,x≤sinx

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow$=(cosωx-sinωx,2sinωx)(ω>0),函數f(x)=$\overrightarrow{a}$•$\overrightarrow$,若f(x)的最小正周期為π.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=1,a=$\sqrt{21}$,b+c=9,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=$\overrightarrow a$•$\overrightarrow b$(a≠0)滿足$\overrightarrow a$=(x2,c),$\overrightarrow b$=(1,x),且f(1)=2,令g(x)=f(x)-|λx-1|(λ>0).
(1)求函數f(x)的表達式;
(2)求函數g(x)的單調區(qū)間;
(3)研究函數g(x)在區(qū)間(0,1)上的零點個數.

查看答案和解析>>

同步練習冊答案