8.函數(shù)f(x)=tan(2x+$\frac{π}{3}$)的最小正周期為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

分析 直接利用正切函數(shù)的周期公式即可求出函數(shù)的最小正周期.

解答 解:因?yàn)楹瘮?shù)y=tan(2x+$\frac{π}{3}$),
所以T=$\frac{π}{2}$.
故選:B.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查正切函數(shù)的周期的求法,考查計(jì)算能力,送分題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)U=R,集合A={x|x2-2x-15<0},B={x|x2-a2<0}.
(1)若A?B,且a>0,求實(shí)數(shù)a的取值范圍;
(2)若a是任意實(shí)數(shù),且A∩∁UB=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知x0=$\frac{π}{3}$是函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一個(gè)極大值點(diǎn),則f(x)的一個(gè)單調(diào)遞減區(qū)間是(  )
A.($\frac{π}{3}$,$\frac{5π}{6}$)B.($\frac{π}{6}$,$\frac{5π}{6}$)C.($\frac{π}{2}$,π)D.($\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.x>0,y>0,xy=x+9y+7,求
(1)xy的最小值;
(2)x+9y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若命題p:0∈{-1,0,1},q:0∈$\{a-1,a+\frac{1}{a}\}$,又“p∧q”為真,則實(shí)數(shù)a值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖:正方形ABCD中,點(diǎn)A(0,0),B($\sqrt{3}$,1),點(diǎn)D在第二象限,則點(diǎn)D的坐標(biāo)為(-1,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.以下五個(gè)個(gè)命題,
①若實(shí)數(shù)a>b,則a+i>b+i.
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1.
③在回歸直線方程$\hat y=0.2x+12$中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\hat y$一定增加0.2單位.
④對(duì)分類變量X與Y,它們的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,“X與Y有關(guān)系”的把握程度越大.
⑤由“若a,b,c∈R,則(ab)c=a(bc)”類比“若$\overrightarrow a,\overrightarrow b,\overrightarrow c$為三個(gè)向量,則$({\overrightarrow a•\overrightarrow b})\overrightarrow c=\overrightarrow a({\overrightarrow b•\overrightarrow c})$”;
正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知m,n∈R+,且m>n
(1)若n>1,比較m2+n與mn+m的大小關(guān)系,并說(shuō)明理由;
(2)若m+2n=1,求$\frac{2}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列函數(shù)中,最小正周期為$\frac{π}{2}$的是( 。
A.y=sinxB.y=cos4xC.y=tan$\frac{x}{2}$D.y=sinx+cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案