【題目】已知拋物線上兩點(diǎn)、,焦點(diǎn)滿足,線段的垂直平分線過.

1)求拋物線的方程;

2)過點(diǎn)作直線,使得拋物線上恰有三個(gè)點(diǎn)到直線的距離都為,求直線的方程.

【答案】1;(2.

【解析】

1)由,結(jié)合拋物線的定義得出,再由中垂線的性質(zhì)得出,利用兩點(diǎn)間的距離公式得出,可求出實(shí)數(shù)的值,由此可得出拋物線的方程;

2)設(shè)直線的方程為,將直線平移且使得平移后的直線與直線之間的距離等于,可得出直線,,可知直線與拋物線相切,并與拋物線的方程聯(lián)立,利用求出實(shí)數(shù)的值,即可得出直線的方程.

1)由拋物線的定義可得,①

由于線段的垂直平分線過,則

,即,

,

,,②

由①②得,因此,拋物線的方程為;

2)設(shè)直線的方程為,將直線平移且使得平移后的直線與直線之間的距離等于,設(shè)平移后的直線方程為,由平行線間的距離公式可得

,得直線,,

可知直線與拋物線相切,

若直線與拋物線相切,則,得,

,此方程無(wú)解;

若直線與拋物線相切,則,得

,得,解得,

因此,直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已兩動(dòng)圓,把它們的公共點(diǎn)的軌跡記為曲線,若曲線軸的正半軸交點(diǎn)為,且曲線上異于點(diǎn)的相異兩點(diǎn)、滿足.

(1)求曲線的方程;

(2)證明直線恒經(jīng)過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對(duì)該商場(chǎng)的服務(wù)給出滿意或不滿意的評(píng)價(jià),得到下面列聯(lián)表:

滿意

不滿意

男顧客

40

10

女顧客

30

20

1)分別估計(jì)男、女顧客對(duì)該商場(chǎng)服務(wù)滿意的概率;

2)能否有95%的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬(wàn)有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號(hào)是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是各項(xiàng)均為正數(shù)的等比數(shù)列,.

1)求的通項(xiàng)公式;

2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),若不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計(jì)的頻率分布直方圖如圖所示.

(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);

(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率;

(3)某經(jīng)銷商來收購(gòu)芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出以下兩種收購(gòu)方案:

方案①:所有芒果以9元/千克收購(gòu);

方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購(gòu).

通過計(jì)算確定種植園選擇哪種方案獲利更多.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)任意均有的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案