20.已知定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x≠0時(shí),有f′(x)>2x2+$\frac{f(x)}{x}$,若a=f(1)-1,b=-$\frac{1}{2}$f(-2)-4,c=f(0)-1,則一定成立的是( 。
A.a>bB.a<cC.b>cD.a<b

分析 構(gòu)造函數(shù)g(x),求出g(x)的單調(diào)性和奇偶性,從而比較函數(shù)值的大小即可.

解答 解:令g(x)=$\frac{f(x)}{x}$-x2,(x≠0),
g′(x)=$\frac{f′(x)x-f(x)-{2x}^{3}}{{x}^{2}}$,
當(dāng)x≠0時(shí),有f′(x)>2x2+$\frac{f(x)}{x}$,
故x>0時(shí),xf′(x)-f(x)-2x3>0,
∴g′(x)>0,
∴g(x)在(0,+∞)遞增,
∵f(-x)=-f(x),
∴g(-x)=$\frac{f(-x)}{-x}$-x2=$\frac{f(x)}{x}$-x2=g(x),
∴g(x)是偶函數(shù),
∴g(x)在(-∞,0)遞減,
而g(1)=f(1)-1=a,g(2)=g(-2)═-$\frac{1}{2}$f(-2)-4=b,
∴a<b,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、奇偶性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(文)試卷(解析版) 題型:填空題

如圖,正方體的棱長(zhǎng)為1,點(diǎn),,且,有以下四個(gè)結(jié)論:

;②;③平面;④是異面直線.其中正確命題的序號(hào)是_______.(注:把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某飲用水器具的三視圖如圖所示,則該幾何體的表面積為( 。
A.B.C.D.11π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在底面是正三角形的三棱柱ABC-A1B1C1中,AB=2,AA1⊥平面ABC,E,F(xiàn)分別為BB1,AC的中點(diǎn).
(1)求證:BF∥平面A1EC;
(2)若AA1=2$\sqrt{2}$,求二面角C-EA1-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,直角三角形ABC中,∠A=60°,∠ABC=90°,AB=2,E為線段BC上一點(diǎn),且BE=$\frac{1}{3}$BC,沿AC邊上的中線BD將△ABD折起到△PBD的位置.
(1)求證:PE⊥BD;
(2)當(dāng)平面PBD⊥平面BCD時(shí),求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為12+π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若函數(shù)f(x)=2lnx+x2-5x在區(qū)間(m,m+1)上為不單調(diào)函數(shù),則m的取值范圍是(0,$\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=e2x-2x+1的單調(diào)增區(qū)間為[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.等差數(shù)列{an}中,若a4+a6=4,則2a3-a1的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案