12.已知各項均為正數(shù)的數(shù)列{an}滿足an+1=4an+3,a1=1.
(1)設(shè)bn=log2(an+1),求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=$\sqrt{2({a}_{n}+1)}$•bn,求數(shù)列{cn}的前n項和.

分析 (1)根據(jù)an+1=4an+3,構(gòu)造等比數(shù)列,求得足an,即可求得bn的通項公式,由通項公式可證明數(shù)列{bn}是等差數(shù)列;
(2)確定數(shù)列{cn}的通項,利用錯位相減法,即可求數(shù)列{cn}的前n項和Tn

解答 (1)證明:an+1=4an+3,
∴an+1+1=4(an+1),a1=1,a1+1=2,
∴數(shù)列{an+1}是以2為首項,以4為公比的等比數(shù)列,
∴an+1=2•4n-1,
an=2•4n-1-1,
bn=log2(an+1)=log22•4n-1=log222n-1=2n-1,
∴bn=2n-1,
∴數(shù)列{bn}是以1為首項,以2為公差的等差數(shù)列;
(2)解:cn=$\sqrt{2({a}_{n}+1)}$•bn=(2n-1)•2n
數(shù)列{cn}的前n項和Tn,Tn=2+3•22+5•23+…+(2n-1)•2n
2Tn=22+3•23+5•24+…+(2n-3)2n+(2n-1)•2n+1,
∴兩式相減:-Tn=2+2•22+2•23+2•24+…+2•2n-(2n-1)•2n+1,
=2n+2-2-4-(2n-1)2n+1,
∴Tn=2n+1(2n-3)+6.

點評 本題考查等差數(shù)列與等比數(shù)列的綜合,考查數(shù)列的通項與求和,考查錯位相減法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=ax2+bx+c(a≠0,a,b,c∈R),且方程f(x)=x無實數(shù)根.給出下列命題:
①若a=1,則不等式f(f(x))>x對一切實數(shù)x都成立;
②若a=-1,則存在實數(shù)x0,使得f(f(x0))>x0成立;
③若a+b+c=0,則f(f(x))<x對一切實數(shù)x都成立;
④方程f(f(x))=x一定無實數(shù)根.
其中正確命題的序號為①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等比數(shù)列{an}為單調(diào)遞增數(shù)列,且滿足a3+a4=12,a1•a6=32,
(Ⅰ)若bn=log2an,試求數(shù)列{bn}的通項公式;
(Ⅱ)求數(shù)列{an•bn}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出以下四個結(jié)論,其中錯誤的是( 。
A.命題“若x2-x-2=0,則x=2”的逆否命題為“x≠2,則x2-x-2≠0”
B.若命題p:?x∈R,x2+x+1=0,則¬p:?x∈R,x2+x+1≠0
C.若p∧q為假命題,則p,q均為假命題
D.“x>2”是“x2-3x+2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD,底面ABCD是∠ABC=60°的菱形,側(cè)面PAD是邊長為2的正三角形,且與底面ABCD垂直,M為PC的中點.
(I)求證:PC⊥AD;
(Ⅱ)求直線DM與平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}的前n項和為Sn,且Sn=n2+n
(1)求數(shù)列{an}的通項公式an;
(2)設(shè)bn=$\frac{4}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如果an=12+22+…+n2,求數(shù)列{$\frac{2n+1}{{a}_{n}}$}的前n項之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:?x∈(0,$\frac{π}{2}}$),sinx<x,則(  )
A.p是真命題,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥xB.p是真命題,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0
C.p是假命題,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥xD.p是假命題,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i為虛數(shù)單位,則復(fù)數(shù)$\frac{3-2i}{i}$=( 。
A.2-3iB.-2-3iC.3-2iD.-2+3i

查看答案和解析>>

同步練習(xí)冊答案