3.若函數(shù)f(x)=ax2+(b-2)x+3是定義在區(qū)間[2a-1,2-a]上的偶函數(shù),則此函數(shù)的值域是[-6,3].

分析 利用函數(shù)的奇偶性求出b,求出a,然后求解二次函數(shù)的值域.

解答 解:函數(shù)f(x)=ax2+(b-2)x+3是定義在區(qū)間[2a-1,2-a]上的偶函數(shù),
可得:b-2=0,1-2a=2-a,解得a=-1,b=2.
函數(shù)f(x)=-x2+3定義域?yàn)椋篬-3,3].二次函數(shù)的開口向下,
函數(shù)的最小值為:-6,最大值為:3.
此函數(shù)的值域是:[-6,3].
故答案為:[-6,3].

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.滿足集合{a}?P⊆{a,b,c}的集合P的數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.眾所周知,乒乓球是中國(guó)的國(guó)球,乒乓球隊(duì)內(nèi)部也有著很嚴(yán)格的競(jìng)爭(zhēng)機(jī)制,為了參加國(guó)際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進(jìn)行一場(chǎng)內(nèi)部對(duì)抗賽,按以往多次比賽的統(tǒng)計(jì),甲獲勝的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各場(chǎng)比賽互不影響.
(1)若甲至少獲勝兩場(chǎng)的概率大于$\frac{7}{10}$,則甲入選參加國(guó)際大賽參賽名單,否則不予入選,問甲是否會(huì)入選最終的大名單?
(2)求甲獲勝場(chǎng)次X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合$P=\left\{{x|y=\sqrt{x+1}}\right\}$,集合$Q=\left\{{y|y=\sqrt{x+1}}\right\}$,則P與Q的關(guān)系是( 。
A.P=QB.P⊆QC.Q⊆PD.P∩Q=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,AD=2,則$\overrightarrow{BD}$•$\overrightarrow{A{C}_{1}}$=( 。
A.1B.0C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC的三邊長(zhǎng)成公比為$\sqrt{2}$的等比數(shù)列,則其最小角的余弦值為$\frac{{5\sqrt{2}}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.tan660°的值是( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系內(nèi),若曲線 C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),則實(shí)數(shù)a取值范圍為( 。
A.(1,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.離心率為$\frac{3}{4}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到橢圓的兩個(gè)焦點(diǎn)距離之和為16,則,橢圓C的方程為$\frac{x^2}{64}+\frac{y^2}{28}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案