20.執(zhí)行如圖所示的程序框圖,輸出s的值為( 。
A.1B.$\frac{2018}{2019}$C.$\frac{2018}{2017}$D.$\frac{2016}{2017}$

分析 根據(jù)程序框圖得到程序計(jì)算的是S=$\frac{2}{4×{1}^{2}-1}$+$\frac{2}{4×{2}^{2}-1}$+…+$\frac{2}{4×100{7}^{2}-1}$+$\frac{2}{4×100{8}^{2}-1}$,然后利用裂項(xiàng)法進(jìn)行計(jì)算即可.

解答 解:∵$\frac{2}{4{n}^{2}-1}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,
∴由程序框圖可知該程序計(jì)算的是S=$\frac{2}{4×{1}^{2}-1}$+$\frac{2}{4×{2}^{2}-1}$+…+$\frac{2}{4×100{7}^{2}-1}$+$\frac{2}{4×100{8}^{2}-1}$
=$\frac{1}{1}$-$\frac{1}{3}$$+\frac{1}{3}$$-\frac{1}{5}$+…+$\frac{1}{2015}$-$\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$,
故選:D

點(diǎn)評(píng) 本題主要考查程序框圖的應(yīng)用,根據(jù)條件計(jì)算出滿足條件的S,利用裂項(xiàng)法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow a=(cos(\frac{π}{2}+x),sin(\frac{π}{2}+x))$,$\overrightarrow b=(-sinx,\sqrt{3}sinx)$,f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的最小正周期及f(x)的最大值;
(2)在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f($\frac{A}{2}$)=1,a=2$\sqrt{3}$,求三角形ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)z+$\frac{2}{z}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,以銳角△ABC的邊BC為直徑的半圓分別與AC、AB交于點(diǎn)D、E,BD、CE的交點(diǎn)為H,且BC=2.
(Ⅰ)證明:AB•CD=BD•HC;
(Ⅱ)求BE•BA+CD•CA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某顏料公司生產(chǎn)A、B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸;生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸、160噸、200噸.如果A產(chǎn)品的利潤(rùn)為300元/噸,B產(chǎn)品的利潤(rùn)為200元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤(rùn)為( 。
A.14000元B.16000元C.18000元D.20000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.建立極坐標(biāo)系設(shè)曲線C:$\left\{\begin{array}{l}{x=5cosα}\\{y=3sinα}\end{array}\right.$(α為參數(shù)),宣線l:ρ(4cosθ-5sinθ)+40=0
(Ⅰ)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程
(Ⅱ)求曲線C上的點(diǎn)到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我們知道:在長(zhǎng)方形ABCD中,如果設(shè)AB=a,BC=b,那么長(zhǎng)方形ABCD的外接圓的半徑R滿足:4R2=a2+b2,類比上述結(jié)論回答:在長(zhǎng)方體ABCD-A1B1C1D1中,如果設(shè)AB=a,AD=b,AA1=c,那么長(zhǎng)方體ABCD-A1B1C1D1的外接球的半徑R滿足的關(guān)系式是4R2=a2+b2+c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn),P是C上的點(diǎn),圓x2+y2=$\frac{{a}^{2}}{9}$與線段PF交于A、B兩點(diǎn),若A、B三等分線段PF,則C的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{17}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一拱橋?yàn)閽佄锞,當(dāng)拱頂離水面2米時(shí),水面寬4米.當(dāng)水面下降2米后,水面寬為4$\sqrt{6}$米.

查看答案和解析>>

同步練習(xí)冊(cè)答案